Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Chromatogr A ; 1351: 56-60, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24906299

ABSTRACT

Analytical scale active flow technology first generation silica monolithic columns kitted out in curtain flow mode of operation were studied for the first time. A series of tests were undertaken assessing the column efficiency, peak asymmetry and detection sensitivity. Two curtain flow columns were tested, one with a fixed outlet ratio of 10% through the central exit port, the other with 30%. Tests were carried out using a wide range in inlet flow segmentation ratios. The performance of the curtain flow columns were compared to a conventional monolithic column. The gain in theoretical plates achieved in the curtain flow mode of operation was as much as 130%, with almost Gaussian bands being obtained. Detection sensitivity increased by as much as 250% under optimal detection conditions. The permeability advantage of the monolithic structure together with the active flow technology makes it a priceless tool for high throughput, sensitive, low detection volume analyses.


Subject(s)
Chromatography, Liquid/standards , Silicon Dioxide/chemistry , Chromatography, Liquid/instrumentation , Permeability , Sensitivity and Specificity
2.
J Chromatogr A ; 1334: 16-9, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24565232

ABSTRACT

Active flow technology (AFT) columns are designed to minimise inefficient flow processes associated with the column wall and radial heterogeneity of the stationary phase bed. This study is the first to investigate AFT on an analytical scale 4.6mm internal diameter first-generation silica monolith. The performance was compared to a conventional first-generation silica monolith and it was observed that the AFT monolith had an increase in efficiency values that ranged from 15 to 111%; the trend demonstrating efficiency gains increasing as the volumetric flow to the detector was decreased, but with no loss in sensitivity.


Subject(s)
Chromatography, Liquid/methods , Silicon Dioxide/chemistry
3.
J Chromatogr A ; 1217(1): 89-98, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19945709

ABSTRACT

The effect of a feed ratio of methyltrimethoxysilane (MTMS) to tetramethoxysilane (TMOS) was studied to improve the performance of a hybrid monolithic silica capillary column with 100-mum i.d. in HPLC in a range MTMS/TMOS (v/v)=10/90-25/75. The domain size was also varied by adjusting the amount of PEG to control permeability (K=2.8x10(-14)-6.9x10(-14)m(2)). Evaluation of the performance for those capillary columns following octadecylsilylation proved an increase in retention factor (k) and a decrease in steric selectivity alpha(triphenylene/ortho-terphenyl) with the increase in MTMS content in the feed. The effect of the feed ratio was also observed in porosity and hydrophobic property of the C18 stationary phase from the results of size exclusion chromatography (SEC) and reversed phase characterization. The monolithic silica capillary columns prepared under new preparation conditions were able to produce a plate height of 4.6-6.0microm for hexylbenzene in a mobile phase acetonitrile/water=80/20 at a linear velocity of 2mm/s. Consequently, it was possible to prepare hybrid monolithic silica capillary columns with higher performance than those reported previously while maintaining the retention factors in a similar range by reducing the MTMS/TMOS ratio and increasing the total silane concentration in feed.


Subject(s)
Chromatography, Gel/instrumentation , Chromatography, High Pressure Liquid/instrumentation , Silanes/chemistry , Silicon Dioxide/chemistry , Porosity , Resins, Synthetic/chemistry
4.
J Sep Sci ; 32(8): 1120-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19301325

ABSTRACT

The development of a new mixed bioreactor for proteomic studies based on trypsin and chymotrypsin is described. Trypsin and chymotrypsin were simultaneously bonded to an epoxy monolithic silica column (100 mmx4.6 mm id) in a one-step reaction via epoxy-groups. In order to compare the catalytic properties of the two enzymes in the isolated and in the multi-enzymatic approach, two other single enzyme bioreactors based on trypsin and chymotrypsin were prepared following the same immobilization protocol. The kinetic parameters of the multi-enzymatic bioreactor were derived and it was demonstrated that it retains the individual catalytic activity of the two enzymes. To prove the power of this experimental approach the new mixed bioreactor was integrated in an LC-ESI-MS/MS system for digestion, enrichment, separation and identification of the test protein insulin-like growth factor binding-protein 1 (IGFBP-1). The peptide map and protein sequence coverage obtained with the three bioreactors were compared. The results clearly indicate that the proposed multi-enzyme approach can reduce both digestion and analysis time, accelerate data interpretation and increase the confidence degree in protein identification.


Subject(s)
Bioreactors , Chymotrypsin/metabolism , Peptides , Proteins/chemistry , Proteins/metabolism , Trypsin/metabolism , Amino Acid Sequence , Chromatography/methods , Insulin-Like Growth Factor Binding Protein 1/chemistry , Insulin-Like Growth Factor Binding Protein 1/genetics , Insulin-Like Growth Factor Binding Protein 1/metabolism , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Proteins/genetics , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/methods
5.
J Sep Sci ; 31(14): 2551-9, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18618471

ABSTRACT

Silica-based monolithic columns were prepared for HPLC with systematic variations of the tetramethoxysilane (TMOS) and polyethylene oxide (PEO) content as reactants in a sol-gel process accompanied by phase separation. The resulting monoliths showed differences in the macropore and silica skeleton diameter as well as in the corresponding domain sizes (the sum of macropore and skeleton diameter). All monoliths were synthesized with a diameter of 4.6 mm and cladded with a suitable polyaryletheretherketone (PEEK) polymer in a standardized and optimized manner for the subsequent chromatographic evaluation of the resulting monolithic HPLC columns. The columns were tested under normal phase conditions using n-heptane/dioxane (95:5 v/v) as a mobile phase and 2-nitroanisole as a test compound for the determination of separation efficiency and permeability. Two different sets of columns were prepared: the first one in which the amount of PEO was stepwise decreased to yield monoliths with identical macropore volumes and variations in the domain sizes. The second group of materials was synthesized adjusting both TMOS and PEO quantities to yield monolithic columns with identical macropore diameters of about 1.80 microm but different skeleton diameters and macropore volumes. The chromatographic results suggest that an increase in the column performance cannot be achieved by just arbitrarily decreasing the domain size of a given column. From a certain point of "downsizing" the monolithic structure a loss of structural homogeneity can be observed, which is apparently responsible for a lower chromatographic performance.


Subject(s)
Silicon Dioxide/chemistry , Adsorption , Anisoles/analysis , Benzophenones , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Dioxanes/chemistry , Heptanes/chemistry , Ketones/chemistry , Mercury/chemistry , Nitrogen/chemistry , Particle Size , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Polymers , Porosity , Silanes/chemical synthesis , Silanes/chemistry , Surface Properties
6.
J Sep Sci ; 30(17): 3069-76, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17924585

ABSTRACT

The preparation and optimization of a new monolithic chymotrypsin bioreactor for online protein digestion is described. Silica monolithic supports have been activated with epoxide functionalities following an optimized in situ procedure and used for covalent immobilization of chymotrypsin in one-step reaction under different conditions. A total of four bioreactors were prepared and characterized in terms of the amount of immobilized enzyme and apparent active units by using a standard substrate, N-benzoyl-L-tyrosine p-nitroanilide (BTPNA). The stability of the bioreactors was evaluated and the morphology of the support after immobilization and use was studied by SEM analysis. The proteolytic activity of the optimized chymotrypsin bioreactor was evaluated using HSA as a model protein by online coupling of the bioreactor with LC-ESI-MS. With the online protocol, complete protein digestion in 120 min was achieved with a sequence coverage of 97.3%.


Subject(s)
Bioreactors , Chymotrypsin/chemistry , Enzymes, Immobilized/chemistry , Epoxy Compounds/chemistry , Serum Albumin/analysis , Silicon Dioxide/chemistry , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Humans , Particle Size , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods , Surface Properties , Time Factors
7.
J Chromatogr A ; 1106(1-2): 112-7, 2006 Feb 17.
Article in English | MEDLINE | ID: mdl-16343520

ABSTRACT

Comprehensive two-dimensional (2D) HPLC in the reversed-phase liquid chromatography (RPLC) mode using C18 silica monolith columns at first dimension (1st-D) (10 cm x 4.6mm I.D.) and second dimension (2nd-D) (5 cm x 4.6mm I.D.) was carried out successfully. A mixture of water and tetrahydrofuran (THF) was used as a mobile phase in the 1st-D separation, and a mixture of water and methanol (CH3OH) in the 2nd-D separation. Sample fractions from 1st-D column were directly loaded into an injection loop of the 2nd-D HPLC equipped with two injector valves for one column. The fractionation time at the 1st-D that was equal to the separation time at the 2nd-D was 45 or 60s. Total peak capacity up to 900 was obtained in about 60 min for the isocratic mode separation of aromatic compounds in this system. Gradient elution mode applied to both 1st-D and 2nd-D separations resulted in shorter separation time and better separation efficiencies than the isocratic mode. It was demonstrated that 2D-HPLC systems employing popular C18 stationary phases with different organic modifiers in mobile phases for each dimension could produce large peak capacity. The different selectivities were provided by the difference in polar interactions between a solute and the organic modifier existing in the stationary phase.


Subject(s)
Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Silicon Dioxide/chemistry
8.
J Sep Sci ; 27(15-16): 1292-302, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15587278

ABSTRACT

Ways of utilizing the true separation efficiency of monolithic silica (MS) columns were studied. The true performance of MS columns, both regular-sized (rod-type clad with PEEK resin, 4.6 mm ID, 10 cm) and capillary sized (in 100 or 200 microm ID fused silica capillary, 25-140 cm) was evaluated by calculating the contribution of extra-column effects. HETP values of 7-9 microm were observed for solutes having retention factors (kvalues) of up to 4 for rod columns and up to 15 for a capillary column. The high permeability of MS columns allowed the use of long columns, with several connected together in the case of rod columns. Narrow-bore connectors gave good results. Peak variance caused by a column connector ranges from 50 to 70% of that caused by one rod-type column for up to three connectors or four columns in 80% methanol, but the addition of a 4th or 5th connector to add a 5th and 6th column, respectively, caused a much greater increase in peak variance, especially for long-retained solutes, which is greater than the variance caused by one rod column. Rod columns seem to show slightly lower efficiency at a pressure higher than 10 MPa or so. The use of acetonitrile-water as a mobile phase better preserved the ability of individual rod columns to generate up to 100,000 theoretical plates with 14 columns connected. Methods for eliminating extra-column effects in micro-HPLC were also studied. Split injection and on-column detection resulted in optimum performance. A long MS capillary measuring 140 cm produced 160,000 theoretical plates. The column efficiency of a capillary column was not affected by the pressure, showing advantages over the rod columns that exhibited peak broadening caused by connectors and pressure.


Subject(s)
Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Silicon Dioxide/chemistry , Sensitivity and Specificity
9.
J Sep Sci ; 27(10-11): 843-52, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15354562

ABSTRACT

The recent invention and successive commercial introduction of monolithic silica columns has motivated many scientists from both academia and industry to study their use in HPLC. The first paper on monolithic silica columns appeared in 1996. Currently about 200 papers have been published relating to applications and characterization of monolithic silica columns, including monolithic capillaries. This review attempts to give an overview covering various aspects of this new column type in the field of high throughput analysis of drugs and metabolites, chiral separations, analysis of pollutants and food-relevant compounds, as well as in bioanalytical separations such as in proteomics. Some of the applications are described in greater detail. The numerous publications dealing with the physicochemical and chromatographic characterization of monolithic silica columns are briefly summarized.


Subject(s)
Chromatography, High Pressure Liquid/methods , Electrophoresis, Capillary/methods , Silicon Dioxide/chemistry , Adsorption , Chromatography/methods , Food Additives/analysis , Microscopy, Electron, Scanning , Permeability , Pharmaceutical Preparations/analysis , Pressure , Stereoisomerism
10.
J Sep Sci ; 27(10-11): 897-904, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15354566

ABSTRACT

Separation of peptides by fast and simple two-dimensional (2D)-HPLC was studied using a monolithic silica column as a second-dimension (2nd-D) column. Every fraction from the first column, 5 cm long (2.1 mm ID) packed with polymer-based cation exchange beads, was subjected to separation in the 2nd-D using an octadecylsilylated (C18) monolithic sillica column (4.6 mm ID, 2.5 cm). A capillary-type monolithic silica C18column (0.1 mm ID, 10 cm) was also employed as a 2nd-D column with split flow/injection. Effluentof the first dimension (1st-D) was directly loaded into an injector loop of 2nd-D HPLC. UV and MS detection were successfully carried out at high linear velocity of mobile phase at 2nd-D using flow splitting for the 4.6 mm ID 2nd-D column, or with directconnection of the capillary column to the MS interface. Two-minute fractionation inthe 1st-D, 118-second loading, and 2-second injection by the 2nd-D injector, allowed one minute for gradient separation in the 2nd-D, resulting in a maximum peak capacity of about 700 within 40 min. The use of a capillary column in solvent consumption and better MS detectability compared to a larger-sized column. This kind of fast and simple 2D-HPLC utilizing monolithic silica columns will be useful for the separation of complex mixtures in a short time.


Subject(s)
Chromatography, High Pressure Liquid/methods , Peptides/analysis , Silicon Dioxide/chemistry , Animals , Cations , Cattle , Chromatography , Electrophoresis, Capillary , Mass Spectrometry , Peptides/isolation & purification , Polymers/chemistry , Spectrometry, Mass, Electrospray Ionization , Trypsin/pharmacology , Ultraviolet Rays
11.
Anal Chem ; 76(5): 1273-81, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14987081

ABSTRACT

Simple and comprehensive two-dimensional (2D)-HPLC was studied in a reversed-phase mode using monolithic silica columns for second-dimension (2nd-D) separation. Every fraction from the first column, 15 cm long (4.6-mm i.d.), packed with fluoroalkylsilyl-bonded (FR) silica particles, was subjected to the separation in the 2nd-D using one or two octadecylsilylated (C(18)) monolithic silica columns (4.6-mm i.d., 3 cm). Monolithic silica columns in the 2nd-D were eluted at a flow rate of up to 10 mL/min with separation time of 30 s that meets the fractionation every 15-30 s at the first dimension (1st-D) operated at a flow rate of 0.4-0.8 mL/min. Three cases were studied. (1) In the simplest scheme of 2D-HPLC, effluent of the 1st-D was directly loaded into an injector loop of 2nd-D HPLC for 28 s, and 2 s was allowed for injection. (2) Two six-port valves each having a sample loop were used to hold the effluent of the 1st-D alternately for 30 s for one 2nd-D column to effect comprehensive 2D-HPLC without the loss of 1st-D effluent. (3) Two monolithic silica columns were used for 2nd-D by using a switching valve and two sets of 2nd-D chromatographs separating each fraction of the 1st-D effluent with the two 2nd-D columns alternately. In this case, two columns of the same stationary phase (C(18)) or different phases, C(18) and (pentabromobenzyloxy)propylsilyl-bonded (PBB), could be employed at the 2nd-D, although the latter needed two complementary runs. The systems produced peak capacity of approximately 1000 in approximately 60 min in cases 1 and 2 and in approximately 30 min in case 3. The three stationary phases, FR, C(18), and PBB, showed widely different selectivity from each other, making 2D separations possible. The simple and comprehensive 2D-HPLC utilizes the stability and high efficiency at high linear velocities of monolithic silica columns.

12.
Anal Chem ; 74(11): 2470-7, 2002 Jun 01.
Article in English | MEDLINE | ID: mdl-12069225

ABSTRACT

Band dispersion was studied and the retention thermodynamics addressed for insulin and angiotensin II on C18 silica monoliths with a bimodal pore size distribution, covering linear mobile-phase velocities up to 1 cm/s and different temperatures. These data suggest that the influence of average column pressure on retention (between 0 and 10 MPa) is not negligible. Plate height curves were interpreted with the van Deemter equation by assuming an independent contribution from mechanical and non-mechanical dispersion mechanisms. This analysis revealed diffusion-limited mass transfer in the mesoporous silica skeleton which, in turn, allowed us to calculate an equivalent dispersion particle diameter (d(disp) = 3 microm) using the C-term parameter of the van Deemter equation. The resulting superposition of reduced plate height curves for monolithic and particulate beds confirmed that this view presents an adequate analogy. The macroporous interskeleton network responsible for the hydraulic permeability of a monolith was translated to the interparticle pore space of particulate beds, and an equivalent permeability particle diameter (d(perm) = 15 microm) was obtained by scaling based on the Kozeny-Carman equation.

SELECTION OF CITATIONS
SEARCH DETAIL
...