Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 103(4-1): 043310, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34005902

ABSTRACT

A class of explicit numerical schemes is developed to solve for the relativistic dynamics and spin of particles in electromagnetic fields, using the Lorentz-Bargmann-Michel-Telegdi equation formulated in the Clifford algebra representation of Baylis. It is demonstrated that these numerical methods, reminiscent of the leapfrog and Verlet methods, share a number of important properties: they are energy conserving, volume conserving, and second-order convergent. These properties are analyzed empirically by benchmarking against known analytical solutions in constant uniform electrodynamic fields. It is demonstrated that the numerical error in a constant magnetic field remains bounded for long-time simulations in contrast to the Boris pusher, whose angular error increases linearly with time. Finally, the intricate spin dynamics of a particle is investigated in a plane-wave field configuration.

2.
Phys Rev Lett ; 120(23): 230404, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29932691

ABSTRACT

A systematic approach is given for engineering dissipative environments that steer quantum wave packets along desired trajectories. The methodology is demonstrated with several illustrative examples: environment-assisted tunneling, trapping, effective mass assignment, and pseudorelativistic behavior. Nonconservative stochastic forces do not inevitably lead to decoherence-we show that purity can be well preserved. These findings highlight the flexibility offered by nonequilibrium open quantum dynamics.

4.
Phys Rev Lett ; 119(17): 173203, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29219449

ABSTRACT

A simple framework for Dirac spinors is developed that parametrizes admissible quantum dynamics and also analytically constructs electromagnetic fields, obeying Maxwell's equations, which yield a desired evolution. In particular, we show how to achieve dispersionless rotation and translation of wave packets. Additionally, this formalism can handle control interactions beyond electromagnetic. This work reveals unexpected flexibility of the Dirac equation for control applications, which may open new prospects for quantum technologies.

5.
Phys Rev Lett ; 118(8): 083201, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-28282186

ABSTRACT

We show that a laser pulse can always be found that induces a desired optical response from an arbitrary dynamical system. As illustrations, driving fields are computed to induce the same optical response from a variety of distinct systems (open and closed, quantum and classical). As a result, the observed induced dipolar spectra without detailed information on the driving field are not sufficient to characterize atomic and molecular systems. The formulation may also be applied to design materials with specified optical characteristics. These findings reveal unexplored flexibilities of nonlinear optics.

6.
Phys Rev Lett ; 119(25): 259903, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29303332

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.119.173203.

7.
Phys Rev E ; 93(6): 063304, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27415384

ABSTRACT

The Gibbs canonical state, as a maximum entropy density matrix, represents a quantum system in equilibrium with a thermostat. This state plays an essential role in thermodynamics and serves as the initial condition for nonequilibrium dynamical simulations. We solve a long standing problem for computing the Gibbs state Wigner function with nearly machine accuracy by solving the Bloch equation directly in the phase space. Furthermore, the algorithms are provided yielding high quality Wigner distributions for pure stationary states as well as for Thomas-Fermi and Bose-Einstein distributions. The developed numerical methods furnish a long-sought efficient computation framework for nonequilibrium quantum simulations directly in the Wigner representation.

8.
J Phys Chem Lett ; 7(9): 1632-7, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27078510

ABSTRACT

Dissipative forces are ubiquitous and thus constitute an essential part of realistic physical theories. However, quantization of dissipation has remained an open challenge for nearly a century. We construct a quantum counterpart of classical friction, a velocity-dependent force acting against the direction of motion. In particular, a translationary invariant Lindblad equation is derived satisfying the appropriate dynamical relations for the coordinate and momentum (i.e., the Ehrenfest equations). Numerical simulations establish that the model approximately equilibrates. These findings significantly advance a long search for a universally valid Lindblad model of quantum friction and open opportunities for exploring novel dissipation phenomena.

9.
Phys Rev Lett ; 109(19): 190403, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23215365

ABSTRACT

We introduce a general and systematic theoretical framework for operational dynamic modeling (ODM) by combining a kinematic description of a model with the evolution of the dynamical average values. The kinematics includes the algebra of the observables and their defined averages. The evolution of the average values is drawn in the form of Ehrenfest-like theorems. We show that ODM is capable of encompassing wide-ranging dynamics from classical non-relativistic mechanics to quantum field theory. The generality of ODM should provide a basis for formulating novel theories.

SELECTION OF CITATIONS
SEARCH DETAIL
...