Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Inflammation ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700792

ABSTRACT

In vitro induced T regulatory cells (iTregs) are promising for addressing inflammation-driven diseases. However, current protocols for the generation and expansion of iTregs fail to induce extensive demethylation of the Treg-specific demethylated region (TSDR) within the FOXP3 gene, recognized as the master regulator for regulatory T cells (Tregs). This deficiency results in the rapid loss of Foxp3 expression and an unstable regulatory phenotype. Nevertheless, inhibition of STAT6 signaling effectively stabilizes Foxp3 expression in iTregs. Thus, this study aimed to develop a protocol combining epigenetic editing with STAT6 deficiency to improve iTregs' ability to maintain stable suppressive function and a functional phenotype. Our findings demonstrate that the combination of STAT6 deficiency (STAT6-/-) with targeted demethylation of the TSDR using a CRISPR-TET1 tool leads to extensive demethylation of FOXP3-TSDR. Demethylation in STAT6-/- iTregs was associated with enhanced expression of Foxp3 and suppressive markers such as CTLA-4, PD-1, IL-10, and TGF-ß. Furthermore, the edited STAT6-/- iTregs exhibited an increased capacity to suppress CD8+ and CD4+ lymphocytes and could more efficiently impair Th1-signature gene expression compared to conventional iTregs. In conclusion, the deactivation of STAT6 and TSDR-targeted demethylation via CRISPR-TET1 is sufficient to induce iTregs with heightened stability and increased suppressive capacity, offering potential applications against inflammatory and autoimmune diseases.

2.
Heliyon ; 10(7): e24419, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601544

ABSTRACT

Background: As the COVID-19 pandemic persists, infections continue to surge globally. Presently, the most effective strategies to curb the disease and prevent outbreaks involve fostering immunity, promptly identifying positive cases, and ensuring their timely isolation. Notably, there are instances where the SARS-CoV-2 virus remains infectious even after patients have completed their quarantine. Objective: Understanding viral persistence post-quarantine is crucial as it could account for localized infection outbreaks. Therefore, studying and documenting such instances is vital for shaping future public health policies. Design: This study delves into a unique case of SARS-CoV-2 persistence in a 60-year-old female healthcare worker with a medical history of hypertension and hypothyroidism. The research spans 55 days, marking the duration between her initial and subsequent diagnosis during Chile's first COVID-19 wave, with the analysis conducted using RT-qPCR. Results: Genomic sequencing-based phylogenetic analysis revealed that the SARS-CoV-2 detected in both Nasopharyngeal swab samples (NPSs) was consistent with the 20B clade of the Nextstrain classification, even after a 55-day interval. Conclusion: This research underscores the need for heightened vigilance concerning cases of viral persistence. Such instances, albeit rare, might be pivotal in understanding sporadic infection outbreaks that occur post-quarantine.

3.
Mol Diagn Ther ; 28(1): 69-86, 2024 01.
Article in English | MEDLINE | ID: mdl-37907826

ABSTRACT

Immunotherapy for colorectal cancer (CRC) is limited to patients with advanced disease who have already undergone first-line chemotherapy and whose tumors exhibit microsatellite instability. Novel technical strategies are required to enhance therapeutic options and achieve a more robust immunological response. Therefore, exploring gene analysis and manipulation at the molecular level can further accelerate the development of advanced technologies to address these challenges. The emergence of advanced genome editing technology, particularly of clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 9, holds promise in expanding the boundaries of cancer immunotherapy. In this manuscript, we provide a comprehensive review of the applications and perspectives of CRISPR technology in improving the design, generation, and efficiency of current immunotherapies, focusing on solid tumors such as colorectal cancer, where these approaches have not been as successful as in hematological conditions.


Subject(s)
CRISPR-Cas Systems , Colorectal Neoplasms , Humans , CRISPR-Cas Systems/genetics , Gene Editing , Immunotherapy , Genetic Therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy
4.
J Cell Sci ; 136(20)2023 10 15.
Article in English | MEDLINE | ID: mdl-37737012

ABSTRACT

All endocytosis and exocytosis in the African trypanosome Trypanosoma brucei occurs at a single subdomain of the plasma membrane. This subdomain, the flagellar pocket, is a small vase-shaped invagination containing the root of the single flagellum of the cell. Several cytoskeleton-associated multiprotein complexes are coiled around the neck of the flagellar pocket on its cytoplasmic face. One of these, the hook complex, was proposed to affect macromolecule entry into the flagellar pocket lumen. In previous work, knockdown of T. brucei (Tb)MORN1, a hook complex component, resulted in larger cargo being unable to enter the flagellar pocket. In this study, the hook complex component TbSmee1 was characterised in bloodstream form T. brucei and found to be essential for cell viability. TbSmee1 knockdown resulted in flagellar pocket enlargement and impaired access to the flagellar pocket membrane by surface-bound cargo, similar to depletion of TbMORN1. Unexpectedly, inhibition of endocytosis by knockdown of clathrin phenocopied TbSmee1 knockdown, suggesting that endocytic activity itself is a prerequisite for the entry of surface-bound cargo into the flagellar pocket.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosoma/metabolism , Endocytosis/physiology , Trypanosoma brucei brucei/metabolism , Cell Membrane/metabolism , Cilia/metabolism , Flagella/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
5.
J Pediatr Endocrinol Metab ; 36(7): 615-627, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37235772

ABSTRACT

Fetal programming occurs during the gestational age when exposure to environmental stimuli can cause long-term changes in the fetus, predisposing it to develop chronic non-communicable diseases (CNCD) in adulthood. Herein, we summarized the role of low-calorie or high-fat diets during pregnancy as fetal programming agents that induce intrauterine growth restriction (IUGR), amplified de novo lipogenesis, and increased amino acid transport to the placenta, which favor the CNCD onset in the offspring. We also outlined how maternal obesity and gestational diabetes act as fetal programming stimuli by reducing iron absorption and oxygen transport to the fetus, stimulating inflammatory pathways that boost neurological disorders and CNCD in the progeny. Moreover, we reviewed the mechanisms through which fetal hypoxia elevates the offspring's risk of developing hypertension and chronic kidney disease in adult life by unbalancing the renin-angiotensin system and promoting kidney cell apoptosis. Finally, we examined how inadequate vitamin B12 and folic acid consumption during pregnancy programs the fetus to greater adiposity, insulin resistance, and glucose intolerance in adulthood. A better understanding of the fetal programming mechanisms may help us reduce the onset of insulin resistance, glucose intolerance, dyslipidemia, obesity, hypertension, diabetes mellitus, and other CNCD in the offspring during adulthood.


Subject(s)
Glucose Intolerance , Hypertension , Insulin Resistance , Prenatal Exposure Delayed Effects , Adult , Pregnancy , Humans , Female , Glucose Intolerance/complications , Fetal Development , Obesity/etiology , Hypertension/complications , Fetal Growth Retardation/etiology
6.
Biomedicines ; 11(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36979631

ABSTRACT

Robust data in animals show that sucralose intake during gestation can predispose the offspring to weight gain, metabolic disturbances, and low-grade systemic inflammation; however, concluding information remains elusive in humans. In this cross-sectional, prospective study, we examined the birth weight, glucose and insulin cord blood levels, monocyte subsets, and inflammatory cytokine profile in 292 neonates at term from mothers with light sucralose ingestion (LSI) of less than 60 mg sucralose/week or heavy sucralose intake (HSI) of more than 36 mg sucralose/day during pregnancy. Mothers in the LSI (n = 205) or HSI (n = 87) groups showed no differences in age, pregestational body mass index, blood pressure, and glucose tolerance. Although there were no differences in glucose, infants from HSI mothers displayed significant increases in birth weight and insulin compared to newborns from LSI mothers. Newborns from HSI mothers showed a substantial increase in the percentage of inflammatory nonclassical monocytes compared to neonates from LSI mothers. Umbilical cord tissue of infants from HSI mothers exhibited higher IL-1 beta and TNF-alpha with lower IL-10 expression than that found in newborns from LSI mothers. Present results demonstrate that heavy sucralose ingestion during pregnancy affects neonates' anthropometric, metabolic, and inflammatory features.

7.
Eur J Immunol ; 53(5): e2250128, 2023 05.
Article in English | MEDLINE | ID: mdl-36785881

ABSTRACT

Signal transducer and activator of transcription 6 (STAT6) promotes tumorigenesis by decreasing the Forkhead box P3+ (Foxp3+) cell frequency allowing for the infiltration of inflammatory cells during the early stages of colitis-associated cancer (CAC). In this study, we dissected the role of STAT6 in the generation of inducible in vitro regulatory T cells (iTregs) and peripheral in vivo Tregs (pTregs) under inflammatory conditions. In in vitro assays, when STAT6 was lacking, iTregs preserved a stable phenotype and expressed high levels of Foxp3 and CD25 during long expansion periods, even in the presence of IL-6. This effect was associated with increased in vitro suppressive ability, over-expression of programmed death-1 (PD-1), CTLA-4, and Foxp3, and decreased IFN-γ expression. Furthermore, iTregs developed during STAT6 deficiency showed a higher demethylation status for the FOXP3 Treg-specific demethylated region (TSDR), coupled with lower DNA methyltransferase 1 (DNMT1) mRNA expression, suggesting that STAT6 may lead to Foxp3 silencing. Using a mouse model of CAC, the STAT6-/- pTregs expressed a more activated phenotype at the intestine, had higher suppressive capacity, and expressed more significant levels of PD-1 and latency-associated peptide of TGF-ß (LAP) associated with their ability to attenuate tumor development. These data suggest that STAT6 signaling impairs the induction, stability, and suppressive capacity of Tregs developed in vitro or in vivo during gut inflammation.


Subject(s)
Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Programmed Cell Death 1 Receptor/metabolism , Transforming Growth Factor beta/metabolism , Forkhead Transcription Factors/metabolism
8.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768437

ABSTRACT

In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.


Subject(s)
Colorectal Neoplasms , Students , Humans , Mexico , Interdisciplinary Studies , Therapies, Investigational , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/therapy
9.
Front Public Health ; 10: 913519, 2022.
Article in English | MEDLINE | ID: mdl-35844873

ABSTRACT

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many countries have reported the experience of at least two contagion waves, describing associated mortality rates and population behavior. The analysis of the effect of this pandemic in different localities can provide valuable information on the key factors to consider in the face of future massive infectious diseases. This work describes the first retrospective and comparative study about behavior during the first and second waves of the COVID-19 pandemic in Chile from a primary Healthcare Center. From 19,313 real-time quantitative PCR (RT-qPCR) tests assessed, the selected 1,694 positive diagnostics showed a decrease in mortality rate in the second wave (0.6%) compared with the first (4.6%). In addition, we observed that infections in the second wave were mainly in young patients with reduced comorbidities. The population with a complete vaccination schedule shows a decrease in the duration of symptoms related to the disease, and patients with more comorbidities tend to develop severe illness. This report provides evidence to partially understand the behavior and critical factors in the severity of the COVID-19 pandemic in the population of Santiago of Chile.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Chile/epidemiology , Humans , Longitudinal Studies , Pandemics , Primary Health Care , Retrospective Studies
10.
Front Immunol ; 12: 713697, 2021.
Article in English | MEDLINE | ID: mdl-34504495

ABSTRACT

The absence of the mouse cell surface receptor CD38 in Cd38-/- mice suggests that this receptor acts as a positive regulator of inflammatory and autoimmune responses. Here, we report that, in the context of the chronic graft-versus-host disease (cGVHD) lupus inducible model, the transfer of B6.C-H2bm12/KhEg(bm12) spleen cells into co-isogenic Cd38-/- B6 mice causes milder lupus-like autoimmunity with lower levels of anti-ssDNA autoantibodies than the transfer of bm12 spleen cells into WT B6 mice. In addition, significantly lower percentages of Tfh cells, as well as GC B cells, plasma cells, and T-bet+CD11chi B cells, were observed in Cd38-/- mice than in WT mice, while the expansion of Treg cells and Tfr cells was normal, suggesting that the ability of Cd38-/- B cells to respond to allogeneic help from bm12 CD4+ T cells is greatly diminished. The frequencies of T-bet+CD11chi B cells, which are considered the precursors of the autoantibody-secreting cells, correlate with anti-ssDNA autoantibody serum levels, IL-27, and sCD40L. Proteomics profiling of the spleens from WT cGVHD mice reflects a STAT1-driven type I IFN signature, which is absent in Cd38-/- cGVHD mice. Kidney, spleen, and liver inflammation was mild and resolved faster in Cd38-/- cGVHD mice than in WT cGVHD mice. We conclude that CD38 in B cells functions as a modulator receptor that controls autoimmune responses.


Subject(s)
ADP-ribosyl Cyclase 1/deficiency , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Disease Susceptibility , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Membrane Glycoproteins/deficiency , Adoptive Transfer , Animals , Autoantibodies/blood , Autoantibodies/immunology , Autoimmunity , Biomarkers , Chronic Disease , Cytokines/metabolism , Disease Models, Animal , Female , Graft vs Host Disease/diagnosis , Graft vs Host Disease/therapy , Immunophenotyping , Lupus Erythematosus, Systemic/etiology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Lymphocyte Count , Mice , Mice, Knockout , Organ Specificity , Proteome , Proteomics/methods , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
11.
Biomolecules ; 11(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-34439835

ABSTRACT

Increasing evidence has demonstrated that oxidized low-density lipoproteins (oxLDL) and lipopolysaccharide (LPS) enhance accumulation of interleukin (IL)-1 beta-producing macrophages in atherosclerotic lesions. However, the potential synergistic effect of native LDL (nLDL) and LPS on the inflammatory ability and migration pattern of monocyte subpopulations remains elusive and is examined here. In vitro, whole blood cells from healthy donors (n = 20) were incubated with 100 µg/mL nLDL, 10 ng/mL LPS, or nLDL + LPS for 9 h. Flow cytometry assays revealed that nLDL significantly decreases the classical monocyte (CM) percentage and increases the non-classical monocyte (NCM) subset. While nLDL + LPS significantly increased the number of NCMs expressing IL-1 beta and the C-C chemokine receptor type 2 (CCR2), the amount of NCMs expressing the CX3C chemokine receptor 1 (CX3CR1) decreased. In vivo, patients (n = 85) with serum LDL-cholesterol (LDL-C) >100 mg/dL showed an increase in NCM, IL-1 beta, LPS-binding protein (LBP), and Castelli's atherogenic risk index as compared to controls (n = 65) with optimal LDL-C concentrations (≤100 mg/dL). This work demonstrates for the first time that nLDL acts in synergy with LPS to alter the balance of human monocyte subsets and their ability to produce inflammatory cytokines and chemokine receptors with prominent roles in atherogenesis.


Subject(s)
CX3C Chemokine Receptor 1/genetics , Cholesterol, LDL/pharmacology , Interleukin-1beta/genetics , Lipopolysaccharides/pharmacology , Monocytes/drug effects , Receptors, CCR2/genetics , Acute-Phase Proteins/genetics , Acute-Phase Proteins/immunology , Adolescent , Adult , C-Reactive Protein/genetics , C-Reactive Protein/immunology , CX3C Chemokine Receptor 1/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Cell Lineage/drug effects , Cell Lineage/immunology , Cholesterol, HDL/blood , Drug Synergism , Female , Flow Cytometry , Gene Expression , Healthy Volunteers , Humans , Interleukin-1beta/immunology , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Middle Aged , Monocytes/cytology , Monocytes/immunology , Primary Cell Culture , Receptors, CCR2/immunology , Triglycerides/blood
12.
Folia Microbiol (Praha) ; 66(6): 973-981, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34263383

ABSTRACT

Endosulfan is an organochlorine pesticide included in the Stockholm Convention for Persistent Organic Compounds. The utilization of endosulfan as the sole source of carbon and its mineralization was evaluated using pure strains of Bacillus subtilis, Bacillus pseudomycoides, Peribacillus simplex, Enterobacter cloacae, Achromobacter spanius, and Pseudomonas putida, isolated from soil with historical pesticide use. The consumption of the α isomer of endosulfan by five of the six strains studied was higher than 95%, while B. subtilis degraded only 76% of the initial concentration (14 mg/L). On the other hand, the degradation of the ß isomer was approximately 86% of the initial concentration (6 mg/L) by B. subtilis, P. simplex, and B. pseudomycoides and 95% by P. putida, E. cloacae, and A. spanius. The ability of A. spanius, P. simplex, and B. pseudomycoides to degrade endosulfan has not been previously reported. The production of endosulfan lactone by the Bacillus strains, as well as A. spanius and P. putida, indicated that endosulfan was degraded by the hydrolytic pathway.


Subject(s)
Insecticides , Soil Pollutants , Achromobacter , Bacillus , Biodegradation, Environmental , Endosulfan , Horticulture , Soil , Soil Microbiology
13.
Int J Mol Sci ; 22(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299314

ABSTRACT

Signal transducer and activator of transcription 1 (STAT1) acts as a tumor suppressor molecule in colitis-associated colorectal cancer (CAC), particularly during the very early stages, modulating immune responses and controlling mechanisms such as apoptosis and cell proliferation. Previously, using an experimental model of CAC, we reported increased intestinal cell proliferation and faster tumor development, which were consistent with more signs of disease and damage, and reduced survival in STAT1-/- mice, compared with WT counterparts. However, the mechanisms through which STAT1 might prevent colorectal cancer progression preceded by chronic inflammation are still unclear. Here, we demonstrate that increased tumorigenicity related to STAT1 deficiency could be suppressed by IL-17 neutralization. The blockade of IL-17 in STAT1-/- mice reduced the accumulation of CD11b+Ly6ClowLy6G+ cells resembling granulocytic myeloid-derived suppressor cells (MDSCs) in both spleen and circulation. Additionally, IL-17 blockade reduced the recruitment of neutrophils into intestinal tissue, the expression and production of inflammatory cytokines, and the expression of intestinal STAT3. In addition, the anti-IL-17 treatment also reduced the expression of Arginase-1 and inducible nitric oxide synthase (iNOS) in the colon, both associated with the main suppressive activity of MDSCs. Thus, a lack of STAT1 signaling induces a significant change in the colonic microenvironment that supports inflammation and tumor formation. Anti-IL-17 treatment throughout the initial stages of CAC related to STAT1 deficiency abrogates the tumor formation possibly caused by myeloid cells.


Subject(s)
Colitis-Associated Neoplasms/etiology , Granulocytes/pathology , Interleukin-17/physiology , STAT1 Transcription Factor/physiology , Animals , Antibodies, Neutralizing/administration & dosage , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/physiopathology , Disease Progression , Female , Granulocytes/immunology , Interleukin-17/antagonists & inhibitors , Interleukin-17/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/pathology , Neoplasms, Experimental/etiology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/physiopathology , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , Tumor Microenvironment/immunology
14.
Int J Mol Sci ; 22(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919941

ABSTRACT

Inflammation is the main driver of the tumor initiation and progression in colitis-associated colorectal cancer (CAC). Recent findings have indicated that the signal transducer and activator of transcription 6 (STAT6) plays a fundamental role in the early stages of CAC, and STAT6 knockout (STAT6-/-) mice are highly resistant to CAC development. Regulatory T (Treg) cells play a major role in coordinating immunomodulation in cancer; however, the role of STAT6 in the induction and function of Treg cells is poorly understood. To clarify the contribution of STAT6 to CAC, STAT6-/- and wild type (WT) mice were subjected to an AOM/DSS regimen, and the frequency of peripheral and local Treg cells was determined during the progression of CAC. When STAT6 was lacking, a remarkable reduction in tumor growth was observed, which was associated with decreased inflammation and an increased number of CD4+CD25+Foxp3+ cells in the colon, circulation, and spleen, including an over-expression of TGF-beta, IL-10, and Foxp3, compared to WT mice, during the early stages of CAC development. Conversely, WT mice showed an inverse frequency of Treg cells compared with STAT6-/- mice, which was followed by intestinal tumor formation. Increased mucosal inflammation, histological damage, and tumorigenesis were restored to levels observed in WT mice when an early inhibition/depletion of Treg cells was performed in STAT6-/- mice. Thus, with STAT6 deficiency, an increased number of Treg cells induce resistance against tumorigenesis, arresting tumor-promoting inflammation. We reported a direct role of STAT6 in the induction and function of Treg cells during CAC development and suggest that STAT6 is a potential target for the modulation of immune response in colitis and CAC.


Subject(s)
Colitis-Associated Neoplasms/genetics , Colorectal Neoplasms/genetics , Inflammation/genetics , STAT6 Transcription Factor/genetics , Animals , Colitis-Associated Neoplasms/immunology , Colitis-Associated Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Disease Models, Animal , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inflammation/immunology , Inflammation/pathology , Interleukin-10/genetics , Mice , Mice, Knockout , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/genetics
15.
J Ethnopharmacol ; 268: 113564, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33166628

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Commiphora leptophloeos (Mart.) J.B. Gillett, popularly known as "imburana", "imburana-de-cheiro" or "imburana-de-espinho", has been used in folk medicine for the treatment of gastrointestinal diseases, such as diarrhea. The indian tribes "Kairir-Shokó and shokó use the bark to treat diarrhea. However, there is no scientific evidence to justify the therapeutic use of this species. AIM OF THE STUDY: To investigate the ethnomedicinal use of Commiphora leptophloeos, with respect to the antimicrobial, antisecretory, antimotility and antispasmodic activities of the crude ethanolic extract obtained from its leaves (CL-EtOHL) and the mechanism underlying this action in rodents. MATERIAL AND METHODS: In the evaluation of antibacterial and antifungal activities was determined the minimum inhibitory concentration (MIC) of the extract, against different strains of bacteria and fungi. All experimental protocols were approved by the Animal Ethics Committee of the Federal University of Paraíba (045/2016). In addition, behavioral screening and acute toxicity assessment of CL-EtOHL were performed in female mice (n = 6). In the investigation of antidiarrheal activity (n = 6), frequency of defecation and number of liquid stools, were classified during 4 h, and intestinal fluid and transit were measured. In addition, the antispasmodic effect on rat ileum (n = 5) was also investigated. RESULTS: The ethanolic extract is rich in flavonoids and the main were identified as C-glycosylated flavonoids (isoorientin, orientin, and vitexin). In the evaluation of antimicrobial and antifungal activity, the extract showed moderate efficacy only against the tested strains of Candida krusei ATCC-6258, Candida parapsilosis ATCC-22019 and Candida glabrata ATCC-90030. The extract had no toxic effect until 2000 mg/kg. In castor oil-induced diarrhea, CL-EtOHL inhibited, in a dose-dependent manner, both total defecation frequency (ED50 = 380.4 ± 145.4 mg/kg) and the number of watery stools (ED50 = 151.2 ± 76.3 mg/kg). The extract showed no effect on fluid accumulation or normal intestinal transit. On the other hand, when the animals were pretreated with castor oil, the extract decreased the distance traveled by the activated charcoal (ED50 = 177.0 ± 50.3 mg/kg). In the investigation of antispasmodic effect, CL-EtOHL antagonized the contractions induced by KCl 30 mM (IC50 = 208.2 ± 25.9 µg/mL) and CCh 10-6 M (IC50 = 95. ± 22.0 µg/mL). To verify the participation of muscarinic receptors in this effect, cumulative carbachol curves were performed in the absence and presence of the extract, and a non-competitive pseudo-irreversible antagonism of these receptors was observed. CONCLUSION: The data indicate that ethanol extract obtained from the leaves of Commiphora leptophloeos has an antidiarrheal effect due to inhibition of the intestinal motility and antispasmodic effect, through the antagonism of muscarinic receptors. In addition, we suggest that flavonoids isolated from CL-EtOHL may be responsible for antidiarrheal activity of this extract. This explains its ethnomedicinal use in the treatment of diarrhea.


Subject(s)
Antidiarrheals/therapeutic use , Commiphora , Diarrhea/drug therapy , Gastrointestinal Motility/drug effects , Medicine, Traditional/methods , Plant Extracts/therapeutic use , Animals , Antidiarrheals/isolation & purification , Antidiarrheals/pharmacology , Diarrhea/microbiology , Diarrhea/physiopathology , Dose-Response Relationship, Drug , Female , Gastrointestinal Motility/physiology , Male , Mice , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Rats
17.
Oncol Lett ; 20(1): 455-464, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32565970

ABSTRACT

Signal transducer and activator of transcription 6 (STAT6) is a member of the STAT family of proteins that serve key roles in the initiation of tumorigenesis and malignant transformation. STAT6 is highly expressed in several types of cancer, including breast, pancreatic, prostate and colorectal cancer. STAT6 transduces signals in response to the binding of interleukin (IL)-4 and IL-13 to their receptors and regulates the expression of genes involved in the immune response, cell survival, tumor proliferation and metastasis. Patients with colorectal cancer exhibit high STAT6 activity in the colonic epithelium, and STAT6 expression is associated with lower survival rates, lymph node metastasis, changes in the epithelial barrier function and alterations in the inflammatory response. A number of studies investigating experimental models and cancer cell lines have revealed that STAT6 is associated with tumor growth and development, as well as with increased invasion and metastasis, suggesting that STAT6 inhibition may serve as a novel therapeutic strategy in colon cancer. The present review summarizes the evidence with regard to the implications of STAT6 in cancer biology and the direct and indirect effects on colon tumor transformation. Furthermore, the current treatment strategies targeting the IL-4/IL-13/STAT6 axis in colon cancer are discussed.

18.
Int J Mol Sci ; 21(6)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244885

ABSTRACT

Colorectal cancer (CRC) is one of the most widespread and deadly types of neoplasia around the world, where the inflammatory microenvironment has critical importance in the process of tumor growth, metastasis, and drug resistance. Despite its limited effectiveness, 5-fluorouracil (5-FU) is the main drug utilized for CRC treatment. The combination of 5-FU with other agents modestly increases its effectiveness in patients. Here, we evaluated the anti-inflammatory Trimethylglycine and the Signal transducer and activator of transcription (STAT6) inhibitor AS1517499, as possible adjuvants to 5-FU in already established cancers, using a model of colitis-associated colon cancer (CAC). We found that these adjuvant therapies induced a remarkable reduction of tumor growth when administrated together with 5-FU, correlating with a reduction in STAT6-phosphorylation. This reduction upgraded the effect of 5-FU by increasing both levels of apoptosis and markers of cell adhesion such as E-cadherin, whereas decreased epithelial-mesenchymal transition markers were associated with aggressive phenotypes and drug resistance, such as ß-catenin nuclear translocation and Zinc finger protein SNAI1 (SNAI1). Additionally, Il-10, Tgf-ß, and Il-17a, critical pro-tumorigenic cytokines, were downmodulated in the colon by these adjuvant therapies. In vitro assays on human colon cancer cells showed that Trimethylglycine also reduced STAT6-phosphorylation. Our study is relatively unique in focusing on the effects of the combined administration of AS1517499 and Trimethylglycine together with 5-FU on already established CAC which synergizes to markedly reduce the colon tumor load. Together, these data point to STAT6 as a valuable target for adjuvant therapy in colon cancer.


Subject(s)
Adjuvants, Pharmaceutic/therapeutic use , Carcinogenesis/pathology , Colitis/complications , Colonic Neoplasms/drug therapy , Fluorouracil/therapeutic use , Glycine/therapeutic use , Pyrimidines/therapeutic use , STAT6 Transcription Factor/metabolism , Adjuvants, Pharmaceutic/pharmacology , Animals , Apoptosis/drug effects , Cadherins/metabolism , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Survival/drug effects , Colitis/pathology , Colonic Neoplasms/etiology , Colonic Neoplasms/pathology , Cytokines/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Fluorouracil/pharmacology , Glycine/pharmacology , Humans , Inflammation/pathology , Mice, Inbred BALB C , Monocytes/metabolism , Phosphorylation/drug effects , Pyrimidines/pharmacology , beta Catenin/metabolism
19.
Medimay ; 27(2): 130-140, Abr-Jun 2020. tab
Article in Spanish | CUMED | ID: cum-76661

ABSTRACT

Introducción: Las nuevas tecnologías de la información son herramientas tecnológicas de la información y la comunicación que permiten cambios en la manera en que los individuos se comunican e interactúan en el ámbito de la medicina. Objetivo: Caracterizar el uso de las nuevas tecnologías digitales en la biblioteca del Policlínico Docente Noelio Capote, municipio Jaruco. Métodos: Se realizó un estudio descriptivo desde septiembre 2018 a julio 2019. El universo fueron los 596 usuarios que acudieron a la biblioteca en el periodo antes mencionado, tomando una muestra aleatoria de 184 usuarios. Se estudiaron las variables: edad, sexo, categoría, especialidad, secciones utilizadas y tiempo de uso. La información se obtuvo del modelo estadístico de la biblioteca, la cual se plasmó en una planilla creada al efecto. La misma se procesó utilizando el software estadístico para Windows, SPSS-15.0. Resultados: Predominaron los usuarios con edades entre 25 a 34 años, sexo femenino y profesionales médicos, siendo el recurso más utilizado las bases de datos. Conclusiones: En la biblioteca se implementan las nuevas tecnologías de la información, aunque se debe perfeccionar su utilización por parte de los usuarios(AU)


Introduction: New technologies of information are technologic tools of information and communication which allows changes in the way people communicate and interact among them in the Medicine field. Objective: To characterize of new digital technologies in the library at Noelio Capote Teaching Policlinic, Jaruco. Methods: A descriptive study was performed from September, 2018 to July, 2019. The universe were the 596 users who went to the library in the previously mentioned period, taking a sample at random of 184 users. The variables age, sex, category, specialty, used sections and time of use were studied. The information was obtained by the statistical form of the library which was controlled in a form created for this. It was processed using the statistical software for Windows, SPSS-15.0. Results: Users between 25 and 34 years old, female sex and physicians professionals prevailed, and the most used resource was data base. Conclusions: In the library new technologies of information were used, although it should be improved by the users(AU)


Subject(s)
Humans , Male , Female , Adult , Information Technology , Libraries, Medical , Health Human Resource Training
20.
Immunotherapy ; 12(1): 9-24, 2020 01.
Article in English | MEDLINE | ID: mdl-31914828

ABSTRACT

Aim: Glucose intolerance associates with M1/M2 macrophage unbalance. We thus wanted to examine the effect of M2 macrophage administration on mouse model of glucose intolerance. Materials & methods: C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks and then received thrice 20 mg/kg streptozotocin (HFD-GI). Bone marrow-derived stem cells were collected from donor mice and differentiated/activated into M2 macrophages for intraperitoneal administration into HFD-GI mice. Results: M2 macrophage treatment abolished glucose intolerance independently of obesity. M2 macrophage administration increased IL-10 in visceral adipose tissue and serum, but showed no effect on serum insulin. While nitric oxide synthase-2 and arginase-1 remained unaltered, M2 macrophage treatment restored AKT phosphorylation in visceral adipose tissue. Conclusion: M2 macrophage treatment abolishes glucose intolerance by increasing IL-10 and phosphorylated AKT.


Subject(s)
Diabetes Mellitus, Type 2/therapy , Immunotherapy/methods , Interleukin-10/metabolism , Macrophages/immunology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Diabetes Mellitus, Type 2/immunology , Diet, High-Fat , Disease Models, Animal , Glucose Intolerance , Humans , Insulin Resistance , Interleukin-10/genetics , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Streptozocin , Th2 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...