Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 24(7): 3795-3806, 2020 04.
Article in English | MEDLINE | ID: mdl-32155321

ABSTRACT

Acute myocardial infarction causes lethal injury to cardiomyocytes during both ischaemia and reperfusion (IR). It is important to define the precise mechanisms by which they die in order to develop strategies to protect the heart from IR injury. Necrosis is known to play a major role in myocardial IR injury. There is also evidence for significant myocardial death by other pathways such as apoptosis, although this has been challenged. Mitochondria play a central role in both of these pathways of cell death, as either a causal mechanism is the case of mitochondrial permeability transition leading to necrosis, or as part of the signalling pathway in mitochondrial cytochrome c release and apoptosis. Autophagy may impact this process by removing dysfunctional proteins or even entire mitochondria through a process called mitophagy. More recently, roles for other programmed mechanisms of cell death such as necroptosis and pyroptosis have been described, and inhibitors of these pathways have been shown to be cardioprotective. In this review, we discuss both mitochondrial and mitochondrial-independent pathways of the major modes of cell death, their role in IR injury and their potential to be targeted as part of a cardioprotective strategy. This article is part of a special Issue entitled 'Mitochondria as targets of acute cardioprotection' and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.


Subject(s)
Mitochondria/genetics , Myocardial Infarction/genetics , Myocardial Reperfusion Injury/genetics , Myocardium/metabolism , Apoptosis/genetics , Autophagy/genetics , Cell Death/genetics , Humans , Mitochondria/pathology , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Necrosis/genetics , Necrosis/pathology , Signal Transduction/genetics
2.
Indian J Med Res ; 151(1): 11-21, 2020 01.
Article in English | MEDLINE | ID: mdl-32134010

ABSTRACT

Obesity is a serious medical condition worldwide, which needs new approaches and recognized international consensus in treating diseases leading to morbidity. The aim of this review was to examine heterogeneous links among the various phenotypes of obesity in adults. Proteins and associated genes in each group were analysed to differentiate between biomarkers. A variety of terms for classification and characterization within this pathology are currently in use; however, there is no clear consensus in terminology. The most significant groups reviewed include metabolically healthy obese, metabolically abnormal obese, metabolically abnormal, normal weight and sarcopenic obese. These phenotypes do not define particular genotypes or epigenetic gene regulation, or proteins related to inflammation. There are many other genes linked to obesity, though the value of screening all of those for diagnosis has low predictive results, as there are no significant biomarkers. It is important to establish a consensus in the terminology used and the characteristics attributed to obesity subtypes. The identification of specific molecular biomarkers is also required for better diagnosis in subtypes of obesity.


Subject(s)
Biomarkers , Obesity/diagnosis , Obesity/genetics , Proteins/genetics , Adult , Genotype , Humans , Obesity/classification , Obesity/epidemiology , Phenotype
3.
J Cell Mol Med ; 24(5): 2717-2729, 2020 03.
Article in English | MEDLINE | ID: mdl-31967733

ABSTRACT

Pre-clinical studies have indicated that mitoprotective drugs may add cardioprotection beyond rapid revascularization, antiplatelet therapy and risk modification. We review the clinical efficacy of mitoprotective drugs that have progressed to clinical testing comprising cyclosporine A, KAI-9803, MTP131 and TRO 40303. Whereas cyclosporine may reduce infarct size in patients undergoing primary angioplasty as evaluated by release of myocardial ischaemic biomarkers and infarct size imaging, the other drugs were not capable of demonstrating this effect in the clinical setting. The absent effect leaves the role of the mitochondrial permeability transition pore for reperfusion injury in humans unanswered and indicates that targeting one single mechanism to provide mitoprotection may not be efficient. Moreover, the lack of effect may relate to favourable outcome with current optimal therapy, but conditions such as age, sex, diabetes, dyslipidaemia and concurrent medications may also alter mitochondrial function. However, as long as the molecular structure of the pore remains unknown and specific inhibitors of its opening are lacking, the mitochondrial permeability transition pore remains a target for alleviation of reperfusion injury. Nevertheless, taking conditions such as ageing, sex, comorbidities and co-medication into account may be of paramount importance during the design of pre-clinical and clinical studies testing mitoprotective drugs.


Subject(s)
Mitochondria, Heart/pathology , Myocardial Reperfusion , Protective Agents/therapeutic use , ST Elevation Myocardial Infarction/drug therapy , Translational Research, Biomedical , Animals , Clinical Trials as Topic , Humans , Protective Agents/pharmacology , ST Elevation Myocardial Infarction/physiopathology
4.
Curr Vasc Pharmacol ; 15(3): 207-217, 2017.
Article in English | MEDLINE | ID: mdl-28128064

ABSTRACT

The association between type 2 diabetes mellitus (T2DM) and systemic inflammation may increase platelet reactivity and the accelerated development of vascular disease. Platelets are able to modulate the function of immune cells via the direct release of growth factors and pro-inflammatory chemokines through the production of microvesicles. The microvesicles trigger a transcellular delivery system of bioactive molecules to other cells acting as vectors in the exchange of biological information. Here, we consider the influence of platelets and platelet-derived microvesicles on cells of the immune system and the implications in the pathogenesis of T2DM.


Subject(s)
Blood Platelets/immunology , Cell-Derived Microparticles/immunology , Diabetes Mellitus, Type 2/immunology , Adaptive Immunity , Animals , Blood Platelets/metabolism , Cell-Derived Microparticles/metabolism , Diabetes Mellitus, Type 2/blood , Humans , Immunity, Innate , Inflammation Mediators/blood , Inflammation Mediators/immunology , Oxidative Stress , Signal Transduction
5.
Toxicon ; 69: 219-26, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23567038

ABSTRACT

Ribonuclease (RNase) treatment represents a novel mechanism based approach to anticancer therapy as an alternative to the DNA damaging drugs commonly used in clinical practice. Apart from their ribonucleolytic activity, cytotoxic effects have attracted a considerable attention to RNases because of their potential as selective agents for treatment of certain malignancies. Among these enzymes, Binase, an RNase from Bacillus intermedius, has shown promising results. Here, we have found that binase selectively attacked human A549 alveolar adenocarcinoma cells to trigger an apoptotic response, whereas normal lung epithelial cells LEK were not affected by the ribonuclease. The tumor transformation led to the modification of certain cellular characteristics causing cell sensitivity to binase. Although a general mode for RNases cytotoxicity includes their penetration into the cell, translocation to the cytosol and degradation of ribonucleic acid, many aspects of this process have not been fully elucidated. Our data revealed the following time-dependent changes induced by binase in A549 cells: (a) fast permanent internalization of the enzyme during the first hours of treatment; (b) temporary increase in cellular permeability for macromolecules during the 4-6 h of treatment; (c) apoptotic alterations in population after 24 h and (d) DNA fragmentation and cell death after 72 h of treatment with binase. Elucidation of these molecular strategies used by this promising toxin provides us essential information for the development of new anticancer drugs.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar/pathology , Antineoplastic Agents/pharmacology , Cell Death/drug effects , Endoribonucleases/pharmacology , Adenocarcinoma, Bronchiolo-Alveolar/drug therapy , Bacillus/enzymology , Cell Line, Tumor , Cell Survival/drug effects , DNA Damage/drug effects , DNA Fragmentation/drug effects , Electrophoresis, Gel, Pulsed-Field , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...