Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(10): e31504, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831827

ABSTRACT

The neem tree (Azadirachta indica A. Juss) is grown mainly for shade, fuel, and numerous non-timber forest products using its leaves, fruit, and bark. It produces an essential oil that is used as a source for obtaining bioinsecticides, with a broad spectrum of action in agricultural production. Its bioinsecticidal activity is due to the presence of triterpenes, such as azadirachtin, a product in continued growth of the global biopesticide market. Optimal conditions for neem oil extraction using response surface methodology (RSM) and microwave-assisted extraction (MAE) methods have been defined. However, the extraction conditions for these methods tend to consume high volumes of organic solvent and long extraction times. The aim of the present study is to determine the optimal conditions for the extraction of azadirachtin from neem seeds in a hydroalcoholic medium using MAE and RSM with a Box-Behnken design (BBD). A BBD was applied to evaluate the effects of the factors, magnetron voltage (X1), extraction time (X2), and pH of the extraction medium (X3), on the yield of the azadirachtin extraction process. The effect of each variable on the extraction yield was studied independently, considering the pure coefficients (linear and quadratic) on the three levels that were studied in the experiments. Moreover, the study experiments were conducted in triplicate, data were presented as mean and standard deviation, homogeneity of variances was estimated using Levene's test, and a two-way ANOVA with Tukey's post hoc analysis was performed to identify the experimental conditions that allowed us to find the highest extraction yield and to analyze whether the response surface model adequately described our data. The most significant effects of the model correspond to quadratic and interaction effects (p < 0.0001); the quadratic terms voltage (X1), extraction time (X2), and pH (X3); and the interaction effects between voltage-pH (X1*X3) and time-pH (X2*X3), which had a significant influence on the model. Moreover, a canonical analysis was performed. The optimal conditions were as follows: 69.22 V, 6.89 min, and a pH value of 4.35, coinciding with the zones shown in the contour plots. Furthermore, the response obtained at the optimal conditions was 37.5 µg of azadirachtin per gram of pretreated seed.

2.
Front Pharmacol ; 13: 826404, 2022.
Article in English | MEDLINE | ID: mdl-35359842

ABSTRACT

Staphylococcus aureus remains a pathogen of high concern in public health programs worldwide due to antibiotic resistance and emergence of highly virulent strains. Many phytochemicals have demonstrated activity against S. aureus and other Gram-positive bacteria, but the minimum inhibitory concentration (MIC) values comparable to commonly used antibiotics are needed. In the present study, bio-guided fractionation of the ethanol extract of seeds of Mammea americana L. (Calophyllaceae) throughout the antibacterial activity, against S. aureus strains that are sensitive and resistant to methicillin, led to the isolation of four coumarins identified as mammea B/BA, mammea B/BC, mammea A/AA cyclo D and mammea A/AA cyclo F, and a mixture of mammea B/BA cyclo F plus mammea B/BD cyclo F. The extract inhibited the growth of S. aureus with MIC values of 2-4 µg/ml and Mammea B/BA (MaBBA) presented MIC values in a range between 0.5 and 1.0 µg/ml in six methicillin-sensitive strains and eight methicillin-resistant strains evaluated. We consider MaBBA the most potent of all mammea coumarins reported to date, according to the literature review carried out at the time of writing of this article. Toxicity assessment in vivo against the nematode Caenorhabditis elegans and in vitro against human fibroblasts of the extract and the compound MaBBA indicated that both had low toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...