Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 9248, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35665754

ABSTRACT

The structural and magnetic properties of the ThCr2Si2-type solid solution LaMn2(Ge1-xSix)2 (x = 0.0 to 1.0) have been investigated employing a combination of X-ray diffraction, magnetization and neutron diffraction measurements, which allowed establishing a magnetic composition-temperature phase diagram. Substitution of Ge by Si leads to a compression of the unit cell, which affects the magnetic exchange interactions. In particular, the magnetic structure of LaMn2(Ge1-xSix)2 is strongly affected by the unit cell parameter c, which is related to the distance between adjacent Mn layers. Commensurate antiferromagnetic layers and a canted ferromagnetic structure dominate the Si-rich part of the solid solution, whilst an incommensurate antiferromagnetic flat spiral and a conical magnetic structure are observed in the Si-poor part.

2.
Sci Rep ; 11(1): 21028, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34697397

ABSTRACT

We herein report a comprehensive investigation on the magnetic, structural, and electric properties of CoO nanoparticles with different sizes by local inspection through hyperfine interactions measured in a wide range of temperatures (10-670 K) by using radioactive [Formula: see text]In([Formula: see text]Cd) tracers with the perturbed angular correlations technique. Small cobalt oxide nanoparticles with the characteristic size of 6.5 nm have been prepared by the wet chemical route that turned out to be essential to incorporate radioactivity tracers during nucleation and growth of the particles. Nanocrystalline samples with 22.1 nm size were obtained by thermal treatments under low pressure of helium at 670 K. The hyperfine data were correlated with X-ray diffraction, ZFC-FC magnetic measurements, and transmission electron microscopy to describe the structure, magnetic properties, size, and shape of samples. An analysis of the temperature evolution of hyperfine parameters revealed that the structural distortion and the magnetic disorder in the core and on the surface layer play an important role in the magnetic behavior of CoO nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...