Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232369

ABSTRACT

CD8+ and CD4+ T-cells play a key role in cellular immune responses against cancer by cytotoxic responses and effector lineages differentiation, respectively. These subsets have been found in different types of cancer; however, it is unclear whether tumor-infiltrating T-cell subsets exhibit similar transcriptome profiling across different types of cancer in comparison with healthy tissue-resident T-cells. Thus, we analyzed the single cell transcriptome of five tumor-infiltrating CD4-T, CD8-T and Treg cells obtained from different types of cancer to identify specific pathways for each subset in malignant environments. An in silico analysis was performed from single-cell RNA-sequencing data available in public repositories (Gene Expression Omnibus) including breast cancer, melanoma, colorectal cancer, lung cancer and head and neck cancer. After dimensionality reduction, clustering and selection of the different subpopulations from malignant and nonmalignant datasets, common genes across different types of cancer were identified and compared to nonmalignant genes for each T-cell subset to identify specific pathways. Exclusive pathways in CD4+ cells, CD8+ cells and Tregs, and common pathways for the tumor-infiltrating T-cell subsets were identified. Finally, the identified pathways were compared with RNAseq and proteomic data obtained from T-cell subsets cultured under malignant environments and we observed that cytokine signaling, especially Th2-type cytokine, was the top overrepresented pathway in Tregs from malignant samples.


Subject(s)
Melanoma , Transcriptome , CD8-Positive T-Lymphocytes , Cytokines/metabolism , Humans , Lymphocytes, Tumor-Infiltrating , Melanoma/metabolism , Proteomics , RNA/metabolism , Tumor Microenvironment/genetics
2.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055129

ABSTRACT

Tissue regeneration is often impaired in patients with metabolic disorders such as diabetes mellitus and obesity, exhibiting reduced wound repair and limited regeneration capacity. We and others have demonstrated that wound healing under normal metabolic conditions is potentiated by the secretome of human endothelial cell-differentiated mesenchymal stem cells (hMSC-EC). However, it is unknown whether this effect is sustained under hyperglycemic conditions. In this study, the wound healing effect of secretomes from undifferentiated human mesenchymal stem cells (hMSC) and hMSC-EC in a type-2 diabetes mouse model was analyzed. hMSC were isolated from human Wharton's jelly and differentiated into hMSC-EC. hMSC and hMSC-EC secretomes were analyzed and their wound healing capacity in C57Bl/6J mice fed with control (CD) or high fat diet (HFD) was evaluated. Our results showed that hMSC-EC secretome enhanced endothelial cell proliferation and wound healing in vivo when compared with hMSC secretome. Five soluble proteins (angiopoietin-1, angiopoietin-2, Factor de crecimiento fibroblástico, Matrix metallopeptidase 9, and Vascular Endothelial Growth Factor) were enriched in hMSC-EC secretome in comparison to hMSC secretome. Thus, the five recombinant proteins were mixed, and their pro-healing property was evaluated in vitro and in vivo. Functional analysis demonstrated that a cocktail of these proteins enhanced the wound healing process similar to hMSC-EC secretome in HFD mice. Overall, our results show that hMSC-EC secretome or a combination of specific proteins enriched in the hMSC-EC secretome enhanced wound healing process under hyperglycemic conditions.


Subject(s)
Culture Media, Conditioned/pharmacology , Diabetes Mellitus, Type 2/metabolism , Mesenchymal Stem Cells/cytology , Recombinant Proteins/pharmacology , Wound Healing/drug effects , Angiopoietin-1/metabolism , Angiopoietin-1/pharmacology , Angiopoietin-2/metabolism , Angiopoietin-2/pharmacology , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Culture Media, Conditioned/chemistry , Diabetes Mellitus, Type 2/chemically induced , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/pharmacology , Mesenchymal Stem Cells/metabolism , Mice , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Wharton Jelly/cytology , Wharton Jelly/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...