Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 84(2): 211-225, 2024 01 16.
Article in English | MEDLINE | ID: mdl-37921711

ABSTRACT

Myelodysplastic syndromes with ring sideroblasts (MDS-RS) commonly develop from hematopoietic stem cells (HSC) bearing mutations in the splicing factor SF3B1 (SF3B1mt). Direct studies into MDS-RS pathobiology have been limited by a lack of model systems that fully recapitulate erythroid biology and RS development and the inability to isolate viable human RS. Here, we combined successful direct RS isolation from patient samples, high-throughput multiomics analysis of cells encompassing the SF3B1mt stem-erythroid continuum, and functional assays to investigate the impact of SF3B1mt on erythropoiesis and RS accumulation. The isolated RS differentiated, egressed into the blood, escaped traditional nonsense-mediated decay (NMD) mechanisms, and leveraged stress-survival pathways that hinder wild-type hematopoiesis through pathogenic GDF15 overexpression. Importantly, RS constituted a contaminant of magnetically enriched CD34+ cells, skewing bulk transcriptomic data. Mis-splicing in SF3B1mt cells was intensified by erythroid differentiation through accelerated RNA splicing and decreased NMD activity, and SF3B1mt led to truncations in several MDS-implicated genes. Finally, RNA mis-splicing induced an uncoupling of RNA and protein expression, leading to critical abnormalities in proapoptotic p53 pathway genes. Overall, this characterization of erythropoiesis in SF3B1mt RS provides a resource for studying MDS-RS and uncovers insights into the unexpectedly active biology of the "dead-end" RS. SIGNIFICANCE: Ring sideroblast isolation combined with state-of-the-art multiomics identifies survival mechanisms underlying SF3B1-mutant erythropoiesis and establishes an active role for erythroid differentiation and ring sideroblasts themselves in SF3B1-mutant myelodysplastic syndrome pathogenesis.


Subject(s)
Myelodysplastic Syndromes , Phosphoproteins , Humans , Phosphoproteins/genetics , Phosphoproteins/metabolism , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA Splicing/genetics , Mutation , Transcription Factors/metabolism , RNA/metabolism
2.
Genes Chromosomes Cancer ; 62(11): 672-677, 2023 11.
Article in English | MEDLINE | ID: mdl-37303296

ABSTRACT

Germline RUNX1 mutations lead to familial platelet disorder with associated myeloid malignancy (FPDMM), characterized by thrombocytopenia, abnormal bleeding, and an elevated risk of developing myelodysplastic neoplasia (MDS) and acute myeloid leukemia (AML) at young age. However, it is not known why or how germline carriers of RUNX1 mutations have a particular propensity to develop myeloid hematologic malignancies, but the acquisition and composition of somatic mutations are believed to initiate and determine disease progression. We present a novel family pedigree that shares a common germline RUNX1R204* variant and exhibits a spectrum of somatic mutations and related myeloid malignancies (MM). RUNX1 mutations are associated with inferior clinical outcome; however, the proband of this family developed MDS with ring sideroblasts (MDS-RS), classified as a low-risk MDS subgroup. His relatively indolent clinical course is likely due to a specific somatic mutation in the SF3B1 gene. While the three main RUNX1 isoforms have been ascribed various roles in normal hematopoiesis, they are now being increasingly recognized as involved in myeloid disease. We investigated the RUNX1 transcript isoform patterns in the proband and his sister, who carries the same germline RUNX1R204* variant, and has FPDMM but no MM. We demonstrate a RUNX1a increase in MDS-RS, as previously reported in MM. Interestingly, we identify a striking unbalance of RUNX1b and -c in FPDMM. In conclusion, this report reinforces the relevance of somatic variants on the clinical phenotypic heterogeneity in families with germline RUNX1 deficiency and investigates a potential new role for RUNX1 isoform disequilibrium as a mechanism for development of MM.


Subject(s)
Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation , Protein Isoforms/genetics
3.
Theranostics ; 11(16): 7671-7684, 2021.
Article in English | MEDLINE | ID: mdl-34335957

ABSTRACT

Snail1 is a transcriptional factor required for epithelial to mesenchymal transition and activation of cancer-associated fibroblasts (CAF). Apart from that, tumor endothelial cells also express Snail1. Here, we have unraveled the role of Snail1 in this tissue in a tumorigenic context. Methods: We generated transgenic mice with an endothelial-specific and inducible Snail1 depletion. This murine line was crossed with MMTV-PyMT mice that develop mammary gland tumors and the consequence of Snail1 depletion in the endothelium were investigated. We also interfere Snail1 expression in cultured endothelial cells. Results: Specific Snail1 depletion in the endothelium of adult mice does not promote an overt phenotype; however, it delays the formation of mammary gland tumors in MMTV-PyMT mice. These effects are associated to the inability of Snail1-deficient endothelial cells to undergo angiogenesis and to enhance CAF activation in a paracrine manner. Moreover, tumors generated in mice with endothelium-specific Snail1 depletion are less advanced and show a papillary phenotype. Similar changes on onset and tumor morphology are observed by pretreatment of MMTV-PyMT mice with the angiogenic inhibitor Bevacizumab. Human breast papillary carcinomas exhibit a lower angiogenesis and present lower staining of Snail1, both in endothelial and stromal cells, compared with other breast neoplasms. Furthermore, human breast tumors datasets show a strong correlation between Snail1 expression and high angiogenesis. Conclusion: These findings show a novel role for Snail1 in endothelial cell activation and demonstrate that these cells impact not only on angiogenesis, but also on tumor onset and phenotype.


Subject(s)
Breast Neoplasms/genetics , Snail Family Transcription Factors/metabolism , Animals , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Female , Fibroblasts/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neovascularization, Pathologic/pathology , Snail Family Transcription Factors/genetics , Transcription Factors/metabolism
4.
Front Physiol ; 12: 696275, 2021.
Article in English | MEDLINE | ID: mdl-34276415

ABSTRACT

Metabolic disorders are frequently associated with physiological changes that occur during ageing. The mitochondrial prohibitin complex (PHB) is an evolutionary conserved context-dependent modulator of longevity, which has been linked to alterations in lipid metabolism but which biochemical function remains elusive. In this work we aimed at elucidating the molecular mechanism by which depletion of mitochondrial PHB shortens the lifespan of wild type animals while it extends that of insulin signaling receptor (daf-2) mutants. A liquid chromatography coupled with mass spectrometry approach was used to characterize the worm lipidome of wild type and insulin deficient animals upon PHB depletion. Toward a mechanistic interpretation of the insights coming from this analysis, we used a combination of biochemical, microscopic, and lifespan analyses. We show that PHB depletion perturbed glycerophospholipids and glycerolipids pools differently in short- versus long-lived animals. Interestingly, PHB depletion in otherwise wild type animals induced the endoplasmic reticulum (ER) unfolded protein response (UPR), which was mitigated in daf-2 mutants. Moreover, depletion of DNJ-21, which functionally interacts with PHB in mitochondria, mimicked the effect of PHB deficiency on the UPRER and on the lifespan of wild type and insulin signaling deficient mutants. Our work shows that PHB differentially modulates lipid metabolism depending on the worm's metabolic status and provides evidences for a new link between PHB and ER homeostasis in ageing regulation.

5.
Gut ; 68(2): 322-334, 2019 02.
Article in English | MEDLINE | ID: mdl-29650531

ABSTRACT

OBJECTIVES: CTNNB1-mutated hepatocellular carcinomas (HCCs) constitute a major part of human HCC and are largely inaccessible to target therapy. Yet, little is known about the metabolic reprogramming induced by ß-catenin oncogenic activation in the liver. We aimed to decipher such reprogramming and assess whether it may represent a new avenue for targeted therapy of CTNNB1-mutated HCC. DESIGN: We used mice with hepatocyte-specific oncogenic activation of ß-catenin to evaluate metabolic reprogramming using metabolic fluxes on tumourous explants and primary hepatocytes. We assess the role of Pparα in knock-out mice and analysed the consequences of fatty acid oxidation (FAO) using etomoxir. We explored the expression of the FAO pathway in an annotated human HCC dataset. RESULTS: ß-catenin-activated HCC were not glycolytic but intensively oxidised fatty acids. We found that Pparα is a ß-catenin target involved in FAO metabolic reprograming. Deletion of Pparα was sufficient to block the initiation and progression of ß-catenin-dependent HCC development. FAO was also enriched in human CTNNB1-mutated HCC, under the control of the transcription factor PPARα. CONCLUSIONS: FAO induced by ß-catenin oncogenic activation in the liver is the driving force of the ß-catenin-induced HCC. Inhibiting FAO by genetic and pharmacological approaches blocks HCC development, showing that inhibition of FAO is a suitable therapeutic approach for CTNNB1-mutated HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Fatty Acids/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , beta Catenin/metabolism , Animals , Epoxy Compounds/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Mice, Knockout , Mutation , Oxidation-Reduction , PPAR alpha/physiology , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...