Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874502

ABSTRACT

Recent findings in cell biology have rekindled interest in Z-DNA, the left-handed helical form of DNA. We report here that two minimally modified nucleosides, 2'F-araC and 2'F-riboG, induce the formation of the Z-form under low ionic strength. We show that oligomers entirely made of these two nucleosides exclusively produce left-handed duplexes that bind to the Zα domain of ADAR1. The effect of the two nucleotides is so dramatic that Z-form duplexes are the only species observed in 10 mM sodium phosphate buffer and neutral pH, and no B-form is observed at any temperature. Hence, in contrast to other studies reporting formation of Z/B-form equilibria by a preference for purine glycosidic angles in syn, our NMR and computational work revealed that sequential 2'F…H2N and intramolecular 3'H…N3' interactions stabilize the left-handed helix. The equilibrium between B- and Z- forms is slow in the 19F NMR time scale (≥ms), and each conformation exhibited unprecedented chemical shift differences in the 19F signals. This observation led to a reliable estimation of the relative population of B and Z species and enabled us to monitor B-Z transitions under different conditions. The unique features of 2'F-modified DNA should thus be a valuable addition to existing techniques for specific detection of new Z-binding proteins and ligands.

2.
Nucleic Acids Res ; 51(10): 4713-4725, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37099382

ABSTRACT

Phosphorothioates (PS) have proven their effectiveness in the area of therapeutic oligonucleotides with applications spanning from cancer treatment to neurodegenerative disorders. Initially, PS substitution was introduced for the antisense oligonucleotides (PS ASOs) because it confers an increased nuclease resistance meanwhile ameliorates cellular uptake and in-vivo bioavailability. Thus, PS oligonucleotides have been elevated to a fundamental asset in the realm of gene silencing therapeutic methodologies. But, despite their wide use, little is known on the possibly different structural changes PS-substitutions may provoke in DNA·RNA hybrids. Additionally, scarce information and significant controversy exists on the role of phosphorothioate chirality in modulating PS properties. Here, through comprehensive computational investigations and experimental measurements, we shed light on the impact of PS chirality in DNA-based antisense oligonucleotides; how the different phosphorothioate diastereomers impact DNA topology, stability and flexibility to ultimately disclose pro-Sp S and pro-Rp S roles at the catalytic core of DNA Exonuclease and Human Ribonuclease H; two major obstacles in ASOs-based therapies. Altogether, our results provide full-atom and mechanistic insights on the structural aberrations PS-substitutions provoke and explain the origin of nuclease resistance PS-linkages confer to DNA·RNA hybrids; crucial information to improve current ASOs-based therapies.


Subject(s)
Oligonucleotides, Antisense , Phosphorothioate Oligonucleotides , Humans , Phosphorothioate Oligonucleotides/chemistry , Oligonucleotides, Antisense/chemistry , DNA , Biological Transport , Sulfur
3.
Nucleic Acids Res ; 50(6): 3056-3069, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35234900

ABSTRACT

This work investigated the structural and biological properties of DNA containing 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-ϵA), a non-natural synthetic base that combines structural features of two naturally occurring DNA lesions (7,8-dihydro-8-oxoadenine and 1,N6-ethenoadenine). UV-, CD-, NMR spectroscopies and molecular modeling of DNA duplexes revealed that oxo-ϵA adopts the non-canonical syn conformation (χ = 65º) and fits very well among surrounding residues without inducing major distortions in local helical architecture. The adduct remarkably mimics the natural base thymine. When considered as an adenine-derived DNA lesion, oxo-ϵA was >99% mutagenic in living cells, causing predominantly A→T transversion mutations in Escherichia coli. The adduct in a single-stranded vector was not repaired by base excision repair enzymes (MutM and MutY glycosylases) or the AlkB dioxygenase and did not detectably affect the efficacy of DNA replication in vivo. When the biological and structural data are viewed together, it is likely that the nearly exclusive syn conformation and thymine mimicry of oxo-ϵA defines the selectivity of base pairing in vitro and in vivo, resulting in lesion pairing with A during replication. The base pairing properties of oxo-ϵA, its strong fluorescence and its invisibility to enzymatic repair systems in vivo are features that are sought in novel DNA-based probes and modulators of gene expression.


Subject(s)
Escherichia coli , Thymine , Base Pairing , DNA/genetics , DNA Repair , Escherichia coli/genetics
4.
Chemistry ; 27(26): 7351-7355, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33772916

ABSTRACT

We report the structural effect of 2'-deoxy-2',2'-difluorocytidine (dFdC) insertions in the DNA strand of a DNA : RNA hybrid duplex and in a self-complementary DNA : DNA duplex. In both cases, the modification slightly destabilizes the duplex and provokes minor local distortions that are more pronounced in the case of the DNA : RNA hybrid. Analysis of the solution structures determined by NMR methods show that dFdC is an adaptable derivative that adopts North type sugar conformation when inserted in pure DNA, or a South sugar conformation in the context of DNA : RNA hybrids. In this latter context, South sugar pucker favors the formation of a 2'F⋅⋅H8 attractive interaction with a neighboring purine, which compensates the destabilizing effect of base pair distortions. These interactions share some features with pseudohydrogen bonds described previously in other nucleic acids structures with fluorine modified sugars.


Subject(s)
DNA , RNA , Deoxycytidine/analogs & derivatives , Nucleic Acid Conformation , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...