Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(9): e0291270, 2023.
Article in English | MEDLINE | ID: mdl-37708166

ABSTRACT

The dragonfly Trithemis kirbyi Sélys, 1891 recently colonized Western Europe from North Africa. Since its first record in the Iberian Peninsula in 2007, the species has been spreading northward and has become naturally established in the central and eastern Iberian Peninsula, the Balearic Islands and southern France. Despite its worldwide distribution, its rapid colonization of the western Mediterranean area occurred only very recently. The aims of this study were to evaluate (1) whether the species' colonization of the western Mediterranean is related to climate change and rising temperatures, specifically the summer warming peaks that have occurred in the last decade, (2) which climatic variables have most influenced its distribution and dispersal, and (3) its potential future dispersal and colonization capacity towards the eastern Mediterranean. We found that the dispersal and recent establishment of T. kirbyi in southwestern Europe strongly depends on increasing temperatures, particularly summer temperature peaks, which has allowed this species to disperse farther and more effectively than during years with average summer temperatures. The most important variable in the suitability models is the minimum temperature of the coldest month, which, in recent decades, has become less of a limiting factor for ectotherms. According to the models, suitable areas for the species are currently found throughout the eastern Mediterranean parts of Europe, and it is likely that it can naturally colonize these areas as it did in the Iberian Peninsula. Trithemis kirbyi is a model of how climate change and observed rising temperatures have turned previously inhospitable regions into suitable areas for exotic species, which may successfully colonize them naturally if they can reach these promising lands on their own. However, this study serves as a warning that such species can also colonize these new regions with a little help from unsuspecting means, which are often responsible for the increasingly common presence of invasive, noxious taxa in Europe.


Subject(s)
Odonata , Animals , Climate Change , Insecta , Europe , Spain
2.
Ecology ; 88(8): 1877-88, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17824415

ABSTRACT

We compiled 46 broadscale data sets of species richness for a wide range of terrestrial plant, invertebrate, and ectothermic vertebrate groups in all parts of the world to test the ability of metabolic theory to account for observed diversity gradients. The theory makes two related predictions: (1) In-transformed richness is linearly associated with a linear, inverse transformation of annual temperature, and (2) the slope of the relationship is near -0.65. Of the 46 data sets, 14 had no significant relationship; of the remaining 32, nine were linear, meeting prediction 1. Model I (ordinary least squares, OLS) and model II (reduced major axis, RMA) regressions then tested the linear slopes against prediction 2. In the 23 data sets having nonlinear relationships between richness and temperature, split-line regression divided the data into linear components, and regressions were done on each component to test prediction 2 for subsets of the data. Of the 46 data sets analyzed in their entirety using OLS regression, one was consistent with metabolic theory (meeting both predictions), and one was possibly consistent. Using RMA regression, no data sets were consistent. Of 67 analyses of prediction 2 using OLS regression on all linear data sets and subsets, two were consistent with the prediction, and four were possibly consistent. Using RMA regression, one was consistent (albeit weakly), and four were possibly consistent. We also found that the relationship between richness and temperature is both taxonomically and geographically conditional, and there is no evidence for a universal response of diversity to temperature. Meta-analyses confirmed significant heterogeneity in slopes among data sets, and the combined slopes across studies were significantly lower than the range of slopes predicted by metabolic theory based on both OLS and RMA regressions. We conclude that metabolic theory, as currently formulated, is a poor predictor of observed diversity gradients in most terrestrial systems.


Subject(s)
Biodiversity , Ecosystem , Energy Metabolism/physiology , Models, Biological , Temperature , Animals , Geography , Invertebrates/growth & development , Linear Models , Plant Development , Predictive Value of Tests , Regression Analysis , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...