Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(10)2023 05 17.
Article in English | MEDLINE | ID: mdl-37408244

ABSTRACT

Phosphoinositides (PIs) are small, phosphorylated lipids that serve many functions in the cell. They regulate endo- and exocytosis, vesicular trafficking, actin reorganization, and cell mobility, and they act as signaling molecules. The most abundant PIs in the cell are phosphatidylinositol-4-monophosphate (PI4P) and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. PI4P is mostly localized at the Golgi apparatus where it regulates the anterograde trafficking from the Golgi apparatus to the plasma membrane (PM), but it also localizes at the PM. On the other hand, the main localization site of PI(4,5)P2 is the PM where it regulates the formation of endocytic vesicles. The levels of PIs are regulated by many kinases and phosphatases. Four main kinases phosphorylate the precursor molecule phosphatidylinositol into PI4P, divided into two classes (PI4KIIα, PI4KIIß, PI4KIIIα, and PI4KIIIß), and three main kinases phosphorylate PI4P to form PI(4,5)P2 (PI4P5KIα, PI4P5KIß, and PI4P5KIγ). In this review, we discuss the localization and function of the kinases that produce PI4P and PI(4,5)P2, as well as the localization and function of their product molecules with an overview of tools for the detection of these PIs.


Subject(s)
Phosphatidylinositols , Phospholipids , Phospholipids/metabolism , Phosphatidylinositols/metabolism , Cell Membrane/metabolism , Golgi Apparatus/metabolism , Signal Transduction
2.
Res Pract Thromb Haemost ; 7(4): 100169, 2023 May.
Article in English | MEDLINE | ID: mdl-37304829

ABSTRACT

Background: Megakaryocytes (MKs) develop from hematopoietic stem cells after stimulation by the cytokine thrombopoietin. During megakaryopoiesis, MKs enlarge, undergo the process of endomitosis, and develop intracellular membranes (demarcation membrane system, DMS). During DMS formation, there is active transport of proteins, lipids, and membranes from the Golgi apparatus to the DMS. The most important phosphoinositide that controls anterograde transport from the Golgi apparatus to the plasma membrane (PM) is phosphatidylinositol-4-monophosphate (PI4P), whose levels are controlled by suppressor of actin mutations 1-like protein (Sac1) phosphatase at the Golgi and endoplasmic reticulum. Objectives: Here we investigated the role of Sac1 and PI4P in megakaryopoiesis. Methods: We analyzed Sac1 and PI4P localization in primary MKs derived from fetal liver or bone marrow and in the DAMI cell line by immunofluorescence. The intracellular and PM pools of PI4P in primary MKs were modulated by expression of Sac1 constructs from retroviral vector and inhibition of PI4 kinase IIIα, respectively. Results: We showed that in primary mouse MKs, PI4P is mostly found in the Golgi apparatus and the PM in immature MKs, while in mature MKs, it is found in the cell periphery and at the PM. The exogenous expression of wild-type but not C389S mutant (catalytically dead) Sac1 results in the perinuclear retention of the Golgi apparatus resembling immature MKs, with decreased ability to form proplatelets. The pharmacologic inhibition of PI4P production specifically at the PM also resulted in a significant decrease in MKs that form proplatelets. Conclusion: These results indicate that both intracellular and PM pools of PI4P mediate MK maturation and proplatelet formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...