Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(14)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34299448

ABSTRACT

Robust and selective quantification methods are required to better analyze feed supplementation effectiveness with specific amino acids. In this work, a reversed-phase high-performance liquid chromatography method with fluorescence detection is proposed and validated for lysine quantification, one of the most limiting amino acids in ruminant nutrition and essential towards milk production. To assess and widen method applicability, different matrices were considered: namely Li2CO3 buffer (the chosen standard reaction buffer), phosphate buffer solution (to mimic media in cellular studies), and rumen inoculum. The method was validated for all three matrices and found to be selective, accurate (92% ± 2%), and precise at both the inter- and intra-day levels in concentrations up to 225 µM, with detection and quantification limits lower than 1.24 and 4.14 µM, respectively. Sample stability was evaluated when stored at room temperature, 4 °C, and -20 °C, showing consistency for up to 48 h regardless of the matrix. Finally, the developed method was applied in the quantification of lysine on real samples. The results presented indicate that the proposed method can be applied towards free lysine quantification in ruminant feeding studies and potentially be of great benefit to dairy cow nutrition supplementation and optimization.


Subject(s)
Animal Feed/analysis , Lysine/analysis , Lysine/chemistry , Amino Acids/chemistry , Animals , Cattle , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Dietary Supplements/analysis , Reproducibility of Results , Ruminants/metabolism
2.
Animals (Basel) ; 11(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915721

ABSTRACT

Zinc is an essential trace element, required for enzymatic, structural, and regulatory functions. As body reserves are scarce, an adequate zinc status relies on proper dietary supply and efficient homeostasis. Several biomarkers have been proposed that enable the detection of poor zinc status, but more sensitive and specific ones are needed to detect marginal deficiencies. The zinc content of commercial dry dog foods has great variability, with a more frequent non-compliance with the maximum authorized limit than with the nutritional requirement. The bioavailability of dietary zinc also plays a crucial role in ensuring an adequate zinc status. Despite controversial results, organic zinc sources have been considered more bioavailable than inorganic sources, albeit the zinc source effect is more evident after a restriction period of dietary zinc. Many disorders have been associated with inadequate zinc status, not being clear whether the occurrence of the disease is the consequence or the cause. This review presents data on zinc requirements and biomarkers for zinc status, that can be applied for the development of supplementation strategies of zinc in complete pet foods. Moreover, it provides an understanding of the role zinc plays in the health of dogs, and how altered zinc status affects diseases in dogs.

3.
Sci Rep ; 10(1): 6830, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321963

ABSTRACT

The amino acid requirements of high-production dairy cows represent a challenge to ensuring that their diet is supplied with available dietary resources, and thus supplementation with protected amino acids is necessary to increase their post-ruminal supply. Lysine is often the most limiting amino acid in corn-based diets. The present study proposes the use of lipid nanoparticles as novel rumen-bypass systems and assesses their capability to carry lysine. Solid lipid nanoparticles, nanostructured lipid carriers and multiple lipid nanoparticles were considered and their resistance in a rumen inoculum collected from fistulated cows was assessed. All nanoparticles presented diameters between 200-500 nm and surface charges lower than -30 mV. Lysine encapsulation was achieved in all nanoparticles, and its efficiency ranged from 40 to 90%. Solid lipid nanoparticles composed of arachidic or stearic acids and Tween 60 resisted ruminal digestion for up to 24 h. The nanoparticles were also proven to protect their lysine content from the ruminal microbiota. Based on our findings, the proposed nanoparticles represent promising candidates for rumen-bypass approaches and should be studied further to help improve the current technologies and overcome their limitations.


Subject(s)
Amino Acids/metabolism , Dairying , Nanotechnology , Rumen/metabolism , Animals , Cattle , Least-Squares Analysis , Lipids/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...