Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 50(2): 265-77, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17355436

ABSTRACT

The vesicle-inducing protein in plastids (VIPP1) is essential for the biogenesis of thylakoid membranes in cyanobacteria and plants. VIPP1 and its bacterial ancestor PspA form large homo-oligomeric rings of >1 MDa. We recently demonstrated that VIPP1 interacts with the chloroplast J-domain co-chaperone CDJ2 and its chaperone partner HSP70B, and hypothesized that the chaperones might be involved in the assembly and/or disassembly of VIPP1 oligomers. To test this hypothesis, we analysed the composition of VIPP1/chaperone complexes in Chlamydomonas reinhardtii cell extracts and monitored effects of the chaperones on VIPP1 assembly states in vitro. We found that CGE1, the chloroplast GrpE homologue, is also part of complexes with HSP70B, CDJ2 and VIPP1. We observed that CDJ2-VIPP1 accumulated as low- and high-molecular-weight complexes in ATP-depleted cell extracts, but as intermediate-size complexes in extracts supplemented with ATP. This was consistent with a role for the chaperones in VIPP1 assembly and disassembly. Using purified proteins, we could demonstrate that the chaperones indeed facilitated both the assembly and disassembly of VIPP1 oligomers. Electron microscopy studies revealed that, in contrast to PspA, VIPP1 rings assembled into rod-shaped supercomplexes that were morphologically similar to microtubule-like structures observed earlier in various plastid types. VIPP1 rods, too, were disassembled by the chaperones, and chaperone-mediated rod disassembly also occurred when VIPP1 lacked an approximately 30-aa C-terminal extension present in VIPP1 homologues but absent in PspA. By regulating the assembly state of VIPP1, the chloroplast HSP70 chaperone system may play an important role in the maintenance/biogenesis of thylakoid membranes.


Subject(s)
Bacterial Proteins/metabolism , Chlamydomonas reinhardtii/metabolism , Chloroplasts/metabolism , HSP70 Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , Adenosine Triphosphate/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Catalysis , Chromatography, Gel , Dimerization , Electrophoresis, Polyacrylamide Gel , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/ultrastructure , Immunoblotting , Immunoprecipitation , Macromolecular Substances/metabolism , Membrane Proteins/chemistry , Membrane Proteins/ultrastructure , Microscopy, Electron , Protein Binding , Thylakoids/metabolism
2.
Phytochemistry ; 62(2): 127-37, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12482447

ABSTRACT

Protein extracts from dark-grown cell suspension cultures of Catharanthus roseus (Madagascar periwinkle) contained several O-methyltransferase (OMT) activities, including the 16-hydroxytabersonine O-methyltransferase (16HT-OMT) in indole alkaloid biosynthesis. This enzyme was enriched through several purification steps, including affinity chromatography on adenosine agarose. SDS-PAGE of the purified protein preparation revealed a protein band at the size expected for plant OMTs (38-43 kDa). Mass spectrometry indicated two dominant protein species of similar mass in this band, and sequences of tryptic peptides showed similarities to known OMTs. Homology-based RT-PCR identified cDNAs for four new OMTs. Two of these cDNAs (CrOMT2 and CrOMT4) encoded the proteins dominant in the preparation enriched for 16HT-OMT. The proteins were closely related (73% identity), but both shared only 48-53% identity with the closest relatives found in the public databases. The enzyme functions were investigated with purified recombinant proteins after cDNA expression in Escherichia coli. Unexpectedly, both proteins had no detectable 16HT-OMT activity, and CrOMT4 was inactive with all substrates investigated. CrOMT2 was identified as a flavonoid OMT that was expressed in dark-grown cell cultures and copurified with 16HT-OMT. It represented a new type of OMT that performs two sequential methylations at the 3'- and 5'-positions of the B-ring in myricetin (flavonol) and dihydromyricetin (dihydroflavonol). The resulting methylation pattern is characteristic for C. roseus flavonol glycosides and anthocyanins, and it is proposed that CrOMT2 is involved in their biosynthesis.


Subject(s)
Catharanthus/enzymology , Methyltransferases/isolation & purification , Methyltransferases/metabolism , Amino Acid Sequence , Catharanthus/genetics , Catharanthus/metabolism , Cells, Cultured , Gene Expression Regulation, Plant , Methylation , Methyltransferases/chemistry , Methyltransferases/genetics , Molecular Structure , Phylogeny , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...