Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Chem ; 20(27): 3339-57, 2013.
Article in English | MEDLINE | ID: mdl-23862615

ABSTRACT

The present article attempts to provide, on the basis of data emerging from studies carried out in our laboratories, a summary of the chemical and pharmacological properties of the new compound N-[(4-trifluoromethyl)benzyl]4- methoxybutyramide (GET73). Particular emphasis is given to findings obtained in vivo and in vitro suggesting that an allosteric modulation of metabotropic glutamate receptor 5 (mGlu5 receptor) by GET73 may represent the mechanism underlying the effects of the compound produced on rat hippocampal glutamate and GABA transmission. Furthermore, behavioural findings demonstrating how this new compound reduces alcohol intake, displays anxiolytic properties, and influences spatial memory in rats are also summarized. Since mGlu5 receptors play an important role in regulating several central actions of drugs of abuse, and the hippocampus is a crucial brain area involved in addiction, anxiety, and spatial memory, a possible link between mGlu5 receptor allosteric modulation and the profiles of action of GET73 is proposed, although to date no studies have yet explored GET73 binding at the mGlu5 receptor orthosteric and/or allosteric sites. Following a brief overview of glutamatergic neurotransmission, mGlu receptor structures and activation mechanisms, the general properties of mGlu5 receptor and its allosteric modulators are described in the first part of the review.


Subject(s)
Anilides/pharmacology , Hippocampus/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Synaptic Transmission/drug effects , Alcohol Drinking , Allosteric Regulation , Anilides/chemical synthesis , Anilides/chemistry , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Hippocampus/drug effects , Receptor, Metabotropic Glutamate 5/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism
2.
Psychol Med ; 42(11): 2325-35, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22410078

ABSTRACT

BACKGROUND: Enhanced acquisition and delayed extinction of fear conditioning are viewed as major determinants of anxiety disorders, which are often characterized by a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis. METHOD: In this study we employed cued fear conditioning in two independent samples of healthy subjects (sample 1: n=60, sample 2: n=52). Two graphical shapes served as conditioned stimuli and painful electrical stimulation as the unconditioned stimulus. In addition, guided by findings from published animal studies on HPA axis-related genes in fear conditioning, we examined variants of the glucocorticoid receptor and corticotropin-releasing hormone receptor 1 genes. RESULTS: Variation in these genes showed enhanced amygdala activation during the acquisition and reduced prefrontal activation during the extinction of fear as well as altered amygdala-prefrontal connectivity. CONCLUSIONS: This is the first demonstration of the involvement of genes related to the HPA axis in human fear conditioning.


Subject(s)
Amygdala/physiology , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Prefrontal Cortex/physiology , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Glucocorticoid/genetics , Adolescent , Adult , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Nerve Net/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...