Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
New Microbiol ; 47(1): 80-87, 2024 May.
Article in English | MEDLINE | ID: mdl-38700887

ABSTRACT

The COVID-19 pandemic forced the adoption of non-pharmaceutical interventions (NPIs) which influenced the circulation of other respiratory pathogens, such as Influenza virus (FLU), Parainfluenza virus (PIV), Respiratory Syncytial virus (RSV), Rhinovirus (RV), Enterovirus (EV), Adenovirus (AdV), Human Metapneumovirus (hMPV), and Human Coronavirus (CoV). The aim of the current study was to investigate how, with the end of the pandemic, the withdrawal of the NPIs impacted on the circulation and distribution of common respiratory viruses. The analyzed samples were collected from June 2021 to March 2023 (post-pandemic period) and compared to ones from the pandemic period. Nucleic acid detection of all respiratory viruses was performed by multiplex real time Polymerase Chain Reaction (PCR) and sequencing was conducted by Next Generation Sequencing (NGS) technique. Our analysis shows that the NPIs adopted against SARS-CoV-2 were also effective in controlling the spread of other respiratory viruses. Moreover, we documented how RV/EVs were the most commonly identified species, with the more abundant strains represented by Coxsackievirus (CV)-A/B and RV-A/C. RV/EVs were also detected in some co-infection cases; in particular, the majority of co-infections concerned CV-B/RV-A, CV-B/ECHO. Given the pandemic potential of respiratory viruses, accurate molecular screening is essential for a proper surveillance and prevention strategy.


Subject(s)
COVID-19 , Respiratory Tract Infections , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/virology , Italy/epidemiology , SARS-CoV-2/genetics , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Pandemics , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Adult , Male , Child
2.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38687324

ABSTRACT

HIV-1 matrix protein p17 variants (vp17s), characterized by amino acid insertions at the COOH-terminal region of the viral protein, have been recently identified and studied for their biological activity. Different from their wild-type counterpart (refp17), vp17s display a potent B cell growth and clonogenic activity. Recent data have highlighted the higher prevalence of vp17s in people living with HIV-1 (PLWH) with lymphoma compared with those without lymphoma, suggesting that vp17s may play a key role in lymphomagenesis. Molecular mechanisms involved in vp17 development are still unknown. Here we assessed the efficiency of HIV-1 Reverse Transcriptase (RT) in processing this genomic region and highlighted the existence of hot spots of mutation in Gag, at the end of the matrix protein and close to the matrix-capsid junction. This is possibly due to the presence of inverted repeats and palindromic sequences together with a high content of Adenine in the 322-342 nucleotide portion, which constrain HIV-1 RT to pause on the template. To define the recombinogenic properties of hot spots of mutation in the matrix gene, we developed plasmid vectors expressing Gag and a minimally modified Gag variant, and measured homologous recombination following cell co-nucleofection by next-generation sequencing. Data obtained allowed us to show that a wide range of recombination events occur in concomitance with the identified hot spots of mutation and that imperfect events may account for vp17s generation.


Subject(s)
HIV Antigens , HIV Reverse Transcriptase , HIV-1 , gag Gene Products, Human Immunodeficiency Virus , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , Humans , HIV-1/genetics , HIV Antigens/genetics , HIV Antigens/metabolism , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Mutation , HIV Infections/virology , HIV Infections/genetics , Cell Line
3.
J Virol Methods ; 324: 114858, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029970

ABSTRACT

People living with human immunodeficiency virus type 1 (HIV-1), even if successfully treated with a combined antiretroviral therapy, display a persistent inflammation and chronic immune activation, and an increasing risk of developing cardiovascular and thrombotic events, cancers, and neurologic disorders. Accumulating evidence reveals that biologically active HIV-1 proteins may play a role in the development of these HIV-1-associated conditions. The HIV-1 matrix protein p17 (p17) is released and accumulates in different organs and tissue where it may exert multiple biological activities on different target cells. To assess a role of p17 in different HIV-1-related pathological processes, it is central to definitively ascertain and quantitate its expression in a large number of sera obtained from HIV-1-infected (HIV-1+) patients. To this aim, we developed a specific and highly sensitive p17 capture immunoenzymatic assay. Data obtained highlight a heterogeneous expression of p17 in blood of tested patients, with patients who were negative or displayed from low to relatively high p17 blood concentrations (range from 0.05 to 7.29 nM). Moreover, we found that blood p17 concentration was totally independent from the viremic status of the patient. This finding calls for monitoring HIV-1+ patients in order to evaluate a possible correlation between p17 amount in blood and the likelihood of developing HIV-1-related pathological conditions.


Subject(s)
HIV Infections , HIV-1 , Humans , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV Antigens/metabolism , Viremia
6.
J Med Virol ; 95(8): e29012, 2023 08.
Article in English | MEDLINE | ID: mdl-37548148

ABSTRACT

This comprehensive review focuses on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact as the cause of the COVID-19 pandemic. Its objective is to provide a cohesive overview of the epidemic history and evolutionary aspects of the virus, with a particular emphasis on its emergence, global spread, and implications for public health. The review delves into the timelines and key milestones of SARS-CoV-2's epidemiological progression, shedding light on the challenges encountered during early containment efforts and subsequent waves of transmission. Understanding the evolutionary dynamics of the virus is crucial in monitoring its potential for adaptation and future outbreaks. Genetic characterization of SARS-CoV-2 is discussed, with a focus on the emergence of new variants and their implications for transmissibility, severity, and immune evasion. The review highlights the important role of genomic surveillance in tracking viral mutations linked to establishing public health interventions. By analyzing the origins, global spread, and genetic evolution of SARS-CoV-2, valuable insights can be gained for the development of effective control measures, improvement of pandemic preparedness, and addressing future emerging infectious diseases of international concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics/prevention & control , Public Health , Disease Outbreaks
7.
J Med Virol ; 95(6): e28848, 2023 06.
Article in English | MEDLINE | ID: mdl-37294038

ABSTRACT

During COVID-19 pandemic, consensus genomic sequences were used for rapidly monitor the spread of the virus worldwide. However, less attention was paid to intrahost genetic diversity. In fact, in the infected host, SARS-CoV-2 consists in an ensemble of replicating and closely related viral variants so-called quasispecies. Here we show that intrahost single nucleotide variants (iSNVs) represent a target for contact tracing analysis. Our data indicate that in the acute phase of infection, in highly likely transmission links, the number of viral particles transmitted from one host to another (bottleneck size) is large enough to propagate iSNVs among individuals. Furthermore, we demonstrate that, during SARS-CoV-2 outbreaks when the consensus sequences are identical, it is possible to reconstruct the transmission chains by genomic investigations of iSNVs. Specifically, we found that it is possible to identify transmission chains by limiting the analysis of iSNVs to only three well-conserved genes, namely nsp2, ORF3, and ORF7.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Quasispecies , Pandemics , Genome, Viral
8.
Microorganisms ; 11(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37317183

ABSTRACT

To date, much discussion has been had on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lung infection associated with COVID-19 onset, of which the major manifestation is characterized by a "cytokine storm" [...].

9.
Viruses ; 15(5)2023 05 09.
Article in English | MEDLINE | ID: mdl-37243214

ABSTRACT

During the COVID-19 pandemic, drug repurposing represented an effective strategy to obtain quick answers to medical emergencies. Based on previous data on methotrexate (MTX), we evaluated the anti-viral activity of several DHFR inhibitors in two cell lines. We observed that this class of compounds showed a significant influence on the virus-induced cytopathic effect (CPE) partly attributed to the intrinsic anti-metabolic activity of these drugs, but also to a specific anti-viral function. To elucidate the molecular mechanisms, we took advantage of our EXSCALATE platform for in-silico molecular modelling and further validated the influence of these inhibitors on nsp13 and viral entry. Interestingly, pralatrexate and trimetrexate showed superior effects in counteracting the viral infection compared to other DHFR inhibitors. Our results indicate that their higher activity is due to their polypharmacological and pleiotropic profile. These compounds can thus potentially give a clinical advantage in the management of SARS-CoV-2 infection in patients already treated with this class of drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pandemics , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Drug Repositioning/methods
11.
Viruses ; 15(2)2023 01 24.
Article in English | MEDLINE | ID: mdl-36851546

ABSTRACT

Severe COVID-19 is characterized by angiogenic features, such as intussusceptive angiogenesis, endothelialitis, and activation of procoagulant pathways. This pathological state can be ascribed to a direct SARS-CoV-2 infection of human lung ECs. Recently, we showed the capability of SARS-CoV-2 to infect ACE2-negative primary human lung microvascular endothelial cells (HL-mECs). This occurred through the interaction of an Arg-Gly-Asp (RGD) motif, endowed on the Spike protein at position 403-405, with αvß3 integrin expressed on HL-mECs. HL-mEC infection promoted the remodeling of cells toward a pro-inflammatory and pro-angiogenic phenotype. The RGD motif is distinctive of SARS-CoV-2 Spike proteins up to the Omicron BA.1 subvariant. Suddenly, a dominant D405N mutation was expressed on the Spike of the most recently emerged Omicron BA.2, BA.4, and BA.5 subvariants. Here we demonstrate that the D405N mutation inhibits Omicron BA.5 infection of HL-mECs and their dysfunction because of the lack of Spike/integrins interaction. The key role of ECs in SARS-CoV-2 pathogenesis has been definitively proven. Evidence of mutations retrieving the capability of SARS-CoV-2 to infect HL-mECs highlights a new scenario for patients infected with the newly emerged SARS-CoV-2 Omicron subvariants, suggesting that they may display less severe disease manifestations than those observed with previous variants.


Subject(s)
COVID-19 , Virus Diseases , Humans , Endothelial Cells , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Integrins , Mutation
12.
New Microbiol ; 46(1): 60-64, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36853820

ABSTRACT

In this study we evaluated the antiviral activity of the Silver Barrier® disinfectant against SARSCoV-2. Silver Barrier® showed time- and concentration-dependent antiviral activity against SARSCoV-2. After 5 min contact time, Silver Barrier® at 0.002% showed a strong inhibitory effect (p<0.001), with a 2-fold reduction of viral genome copy numbers, and a robust suppression (94%) of SARS-CoV-2 infectivity. Considering the effects obtained in solution and within a very short time, Silver Barrier® stands as an excellent new candidate for the disinfection of work environments, especially at the healthcare level, where there are people at high risk of serious illnesses.


Subject(s)
COVID-19 , Disinfectants , Humans , SARS-CoV-2 , Disinfectants/pharmacology , COVID-19/prevention & control , Silver/pharmacology , Antiviral Agents/pharmacology
14.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499592

ABSTRACT

The BQ.1 SARS-CoV-2 variant, also known as Cerberus, is one of the most recent Omicron descendant lineages. Compared to its direct progenitor BA.5, BQ.1 has some additional spike mutations in some key antigenic sites, which confer further immune escape ability over other circulating lineages. In such a context, here, we perform a genome-based survey aimed at obtaining a complete-as-possible nuance of this rapidly evolving Omicron subvariant. Genetic data suggest that BQ.1 represents an evolutionary blind background, lacking the rapid diversification that is typical of a dangerous lineage. Indeed, the evolutionary rate of BQ.1 is very similar to that of BA.5 (7.6 × 10-4 and 7 × 10-4 subs/site/year, respectively), which has been circulating for several months. The Bayesian Skyline Plot reconstruction indicates a low level of genetic variability, suggesting that the peak was reached around 3 September 2022. Concerning the affinity for ACE2, structure analyses (also performed by comparing the properties of BQ.1 and BA.5 RBD) indicate that the impact of the BQ.1 mutations may be modest. Likewise, immunoinformatic analyses showed moderate differences between the BQ.1 and BA5 potential B-cell epitopes. In conclusion, genetic and structural analyses on SARS-CoV-2 BQ.1 suggest no evidence of a particularly dangerous or high expansion capability. Genome-based monitoring must continue uninterrupted for a better understanding of its descendants and all other lineages.


Subject(s)
COVID-19 , Humans , Bayes Theorem , COVID-19/epidemiology , COVID-19/genetics , SARS-CoV-2/genetics , Biological Evolution
16.
New Microbiol ; 45(4): 355-357, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36066212

ABSTRACT

Persistence of detectable viral RNA does not depend on the symptomatic status of the patients. Here we describe the case of a strongly immunocompromised patient living with a prolonged SARSCoV-2 Alpha variant infection without showing any symptoms. The importance of our findings is that the persistent infection with an old SARS-CoV-2 strain, in an immunocompromised host, may allow recombination events generating new viral variants whose pathogenicity cannot be predicted. Our observation calls for the urgent need for continuous monitoring of SARS-CoV-2 genomic evolution in immunocompromised patients.


Subject(s)
COVID-19 , HIV Seropositivity , HIV-1 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , HIV-1/genetics , Immunocompromised Host
17.
PLoS One ; 17(6): e0270024, 2022.
Article in English | MEDLINE | ID: mdl-35771751

ABSTRACT

During the first wave of infections, neurological symptoms in Coronavirus Disease 2019 (COVID-19) patients raised particular concern, suggesting that, in a subset of patients, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could invade and damage cells of the central nervous system (CNS). Indeed, up to date several in vitro and in vivo studies have shown the ability of SARS-CoV-2 to reach the CNS. Both viral and/or host related features could explain why this occurs only in certain individuals and not in all the infected population. The aim of the present study was to evaluate if onset of neurological manifestations in COVID-19 patients was related to specific viral genomic signatures. To this end, viral genome was extracted directly from nasopharyngeal swabs of selected SARS-CoV-2 positive patients presenting a spectrum of neurological symptoms related to COVID-19, ranging from anosmia/ageusia to more severe symptoms. By adopting a whole genome sequences approach, here we describe a panel of known as well as unknown mutations detected in the analyzed SARS-CoV-2 genomes. While some of the found mutations were already associated with an improved viral fitness, no common signatures were detected when comparing viral sequences belonging to specific groups of patients. In conclusion, our data support the notion that COVID-19 neurological manifestations are mainly linked to patient-specific features more than to virus genomic peculiarities.


Subject(s)
Ageusia , COVID-19 , Central Nervous System , Genomics , Humans , SARS-CoV-2/genetics
18.
Virus Evol ; 8(1): veac042, 2022.
Article in English | MEDLINE | ID: mdl-35706980

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) emerge for their capability to better adapt to the human host aimed and enhance human-to-human transmission. Mutations in spike largely contributed to adaptation. Viral persistence is a prerequisite for intra-host virus evolution, and this likely occurred in immunocompromised patients who allow intra-host long-term viral replication. The underlying mechanism leading to the emergence of variants during viral persistence in the immunocompromised host is still unknown. Here, we show the existence of an ensemble of minor mutants in the early biological samples obtained from an immunocompromised patient and their dynamic interplay with the master mutant during a persistent and productive long-term infection. In particular, after 222 days of active viral replication, the original master mutant, named MB610, was replaced by a minor quasispecies (MB61222) expressing two critical mutations in spike, namely Q493K and N501T. Isolation of the two viruses allowed us to show that MB61222 entry into target cells occurred mainly by the fusion at the plasma membrane (PM), whereas endocytosis characterized the entry mechanism used by MB610. Interestingly, coinfection of two human cell lines of different origin with the SARS-CoV-2 isolates highlighted the early and dramatic predominance of MB61222 over MB610 replication. This finding may be explained by a faster replicative activity of MB61222 as compared to MB610 as well as by the capability of MB61222 to induce peculiar viral RNA-sensing mechanisms leading to an increased production of interferons (IFNs) and, in particular, of IFN-induced transmembrane protein 1 (IFITM1) and IFITM2. Indeed, it has been recently shown that IFITM2 is able to restrict SARS-CoV-2 entry occurring by endocytosis. In this regard, MB61222 may escape the antiviral activity of IFITMs by using the PM fusion pathway for entry into the target cell, whereas MB610 cannot escape this host antiviral response during MB61222 coinfection, since it has endocytosis as the main pathway of entry. Altogether, our data support the evidence of quasispecies fighting for host dominance by taking benefit from the cell machinery to restrict the productive infection of competitors in the viral ensemble. This finding may explain, at least in part, the extraordinary rapid worldwide turnover of VOCs that use the PM fusion pathway to enter into target cells over the original pandemic strain.

19.
Proc Natl Acad Sci U S A ; 119(27): e2122050119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35763571

ABSTRACT

AIDS-defining cancers declined after combined antiretroviral therapy (cART) introduction, but lymphomas are still elevated in HIV type 1 (HIV-1)-infected patients. In particular, non-Hodgkin's lymphomas (NHLs) represent the majority of all AIDS-defining cancers and are the most frequent cause of death in these patients. We have recently demonstrated that amino acid (aa) insertions at the HIV-1 matrix protein p17 COOH-terminal region cause protein destabilization, leading to conformational changes. Misfolded p17 variants (vp17s) strongly impact clonogenic B cell growth properties that may contribute to B cell lymphomagenesis as suggested by the significantly higher frequency of detection of vp17s with COOH-terminal aa insertions in plasma of HIV-1-infected patients with NHL. Here, we expand our previous observations by assessing the prevalence of vp17s in large retrospective cohorts of patients with and without lymphoma. We confirm the significantly higher prevalence of vp17s in lymphoma patients than in HIV-1-infected individuals without lymphoma. Analysis of 3,990 sequences deposited between 1985 and 2017 allowed us to highlight a worldwide increasing prevalence of HIV-1 mutants expressing vp17s over time. Since genomic surveillance uncovered a cluster of HIV-1 expressing a B cell clonogenic vp17 dated from 2011 to 2019, we conclude that aa insertions can be fixed in HIV-1 and that mutant viruses displaying B cell clonogenic vp17s are actively spreading.


Subject(s)
B-Lymphocytes , HIV Antigens , HIV-1 , Lymphoma, AIDS-Related , gag Gene Products, Human Immunodeficiency Virus , B-Lymphocytes/virology , Genetic Variation , HIV Antigens/genetics , HIV-1/genetics , HIV-1/isolation & purification , Humans , Lymphoma, AIDS-Related/epidemiology , Lymphoma, AIDS-Related/virology , Prevalence , Retrospective Studies , gag Gene Products, Human Immunodeficiency Virus/genetics
20.
ACS Chem Biol ; 17(7): 1978-1988, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35731947

ABSTRACT

The spread of COVID-19 has been exacerbated by the emergence of variants of concern (VoC). Many VoC contain mutations in the spike protein (S-protein) and are implicated in infection and response to therapeutics. Bivalent neutralizing antibodies (nAbs) targeting the S-protein receptor-binding domain (RBD) are promising therapeutics for COVID-19, but they are limited by low potency and vulnerability to RBD mutations in VoC. To address these issues, we used naïve phage-displayed peptide libraries to isolate and optimize 16-residue peptides that bind to the RBD or the N-terminal domain (NTD) of the S-protein. We fused these peptides to the N-terminus of a moderate-affinity nAb to generate tetravalent peptide-IgG fusions, and we showed that both classes of peptides were able to improve affinities for the S-protein trimer by >100-fold (apparent KD < 1 pM). Critically, cell-based infection assays with a panel of six SARS-CoV-2 variants demonstrated that an RBD-binding peptide was able to enhance the neutralization potency of a high-affinity nAb >100-fold. Moreover, this peptide-IgG was able to neutralize variants that were resistant to the same nAb in the bivalent IgG format, including the dominant B.1.1.529 (Omicron) variant that is resistant to most clinically approved therapeutic nAbs. To show that this approach is general, we fused the same peptide to a clinically approved nAb drug and showed that it enabled the neutralization of a resistant variant. Taken together, these results establish minimal peptide fusions as a modular means to greatly enhance affinities, potencies, and breadth of coverage of nAbs as therapeutics for SARS-CoV-2.


Subject(s)
Bacteriophages , COVID-19 Drug Treatment , Antibodies, Neutralizing , Antibodies, Viral/genetics , Bacteriophages/genetics , Humans , Immunoglobulin G/genetics , Neutralization Tests , Peptide Library , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...