Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 60(1): 84-95, 2019 01.
Article in English | MEDLINE | ID: mdl-30134122

ABSTRACT

The mechanisms underlying abnormal granuloma formation in patients with sarcoidosis are complex and remain poorly understood. A novel in vitro human granuloma model was used to determine the molecular mechanisms of granuloma genesis in patients with sarcoidosis in response to putative disease-causing mycobacterial antigens. Peripheral blood mononuclear cells (PBMCs) from patients with active sarcoidosis and from normal, disease-free control subjects were incubated for 7 days with purified protein derivative-coated polystyrene beads. Molecular responses, as reflected by differential expression of genes, extracellular cytokine patterns, and cell surface receptor expression, were analyzed. Unbiased systems biology approaches were used to identify signaling pathways engaged during granuloma formation. Model findings were compared with human lung and mediastinal lymph node gene expression profiles. Compared with identically treated PBMCs of control subjects (n = 5), purified protein derivative-treated sarcoidosis PBMCs (n = 6) were distinguished by the formation of cellular aggregates resembling granulomas. Ingenuity Pathway Analysis of differential expression gene patterns identified molecular pathways that are primarily regulated by IL-13, which promotes alternatively activated (M2) macrophage polarization. M2 polarization was further demonstrated by immunohistochemistry performed on the in vitro sarcoidosis granuloma-like structures. IL-13-regulated gene pathways were confirmed in human sarcoidosis lung and mediastinal lymph node tissues. The in vitro human sarcoidosis granuloma model provides novel insights into early granuloma formation, particularly IL-13 regulation of molecular networks that regulate M2 macrophage polarization. M2 macrophages are predisposed to aggregation and multinucleated giant cell formation, which are characteristic features of sarcoidosis granulomas. Clinical trial registered with www.clinicaltrials.gov (NCT01857401).


Subject(s)
Gene Expression Regulation , Granuloma/immunology , Interleukin-13/metabolism , Leukocytes, Mononuclear/immunology , Lung/immunology , Macrophages/immunology , Sarcoidosis, Pulmonary/immunology , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Granuloma/genetics , Granuloma/metabolism , Granuloma/pathology , Humans , In Vitro Techniques , Interleukin-13/genetics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Lung/metabolism , Lung/pathology , Macrophages/metabolism , Macrophages/pathology , Sarcoidosis, Pulmonary/genetics , Sarcoidosis, Pulmonary/metabolism , Sarcoidosis, Pulmonary/pathology , Transcriptome
2.
Am J Respir Cell Mol Biol ; 57(4): 487-498, 2017 10.
Article in English | MEDLINE | ID: mdl-28598206

ABSTRACT

Many aspects of pathogenic granuloma formation are poorly understood, requiring new relevant laboratory models that represent the complexity (genetics and diversity) of human disease. To address this need, we developed an in vitro model of granuloma formation using human peripheral blood mononuclear cells (PBMCs) derived from patients with active sarcoidosis, latent tuberculosis (TB) infection (LTBI), or normal healthy control subjects. PBMCs were incubated for 7 days with uncoated polystyrene beads or beads coated with purified protein derivative (PPD) or human serum albumin. In response to PPD-coated beads, PBMCs from donors with sarcoidosis and LTBI formed robust multicellular aggregates resembling granulomas, displaying a typical T-helper cell type 1 immune response, as assessed by cytokine analyses. In contrast, minimal PBMC aggregation occurred when control PBMCs were incubated with PPD-coated beads, whereas the response to uncoated beads was negligible in all groups. Sarcoidosis PBMCs responded to human serum albumin-coated beads with modest cellular aggregation and inflammatory cytokine release. Whereas the granuloma-like aggregates formed in response to PPD-coated beads were similar for sarcoidosis and LTBI, molecular profiles differed significantly. mRNA expression patterns revealed distinct pathways engaged in early granuloma formation in sarcoidosis and LTBI, and they resemble molecular patterns reported in diseased human tissues. This novel in vitro human granuloma model is proposed as a tool to investigate mechanisms of early granuloma formation and for preclinical drug discovery research of human granulomatous disorders. Clinical trial registered with www.clinicaltrials.gov (NCT01857401).


Subject(s)
Granuloma, Respiratory Tract/immunology , Latent Tuberculosis/immunology , Models, Immunological , Sarcoidosis, Pulmonary/immunology , Th1 Cells/immunology , Tuberculosis, Pulmonary/immunology , Female , Granuloma, Respiratory Tract/pathology , Humans , Latent Tuberculosis/pathology , Male , Sarcoidosis, Pulmonary/pathology , Th1 Cells/pathology , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...