Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 7(6): 6835-46, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26771841

ABSTRACT

Extracellular vesicles (EV) are emerging structures with promising properties for intercellular communication. In addition, the characterization of EV in biofluids is an attractive source of non-invasive diagnostic, prognostic and predictive biomarkers. Here we show that urinary EV (uEV) from prostate cancer (PCa) patients exhibit genuine and differential physical and biological properties compared to benign prostate hyperplasia (BPH). Importantly, transcriptomics characterization of uEVs led us to define the decreased abundance of Cadherin 3, type 1 (CDH3) transcript in uEV from PCa patients. Tissue and cell line analysis strongly suggested that the status of CDH3 in uEVs is a distal reflection of changes in the expression of this cadherin in the prostate tumor. CDH3 was negatively regulated at the genomic, transcriptional, and epigenetic level in PCa. Our results reveal that uEVs could represent a non-invasive tool to inform about the molecular alterations in PCa.


Subject(s)
Biomarkers, Tumor/genetics , Biomarkers, Tumor/urine , Cadherins/genetics , Cadherins/urine , Extracellular Vesicles/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/urine , Exosomes/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Gene Expression Profiling/methods , Humans , Male , Prostatic Neoplasms/pathology
2.
Methods ; 77-78: 25-30, 2015 May.
Article in English | MEDLINE | ID: mdl-25697760

ABSTRACT

Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high number of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dramatically increasing in western societies in the past decades, suggesting that this type of tumor is exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene (inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the features of the human disease. In order to study the molecular alterations in prostate cancer, we need to overcome the methodological challenges that this tissue imposes. In this review we present protocols and methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer.


Subject(s)
PTEN Phosphohydrolase/analysis , PTEN Phosphohydrolase/biosynthesis , Prostatic Neoplasms/metabolism , Tumor Suppressor Proteins/analysis , Tumor Suppressor Proteins/biosynthesis , Animals , Humans , Male , Mice , Mutation/genetics , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...