Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 18(8)2017 Jul 31.
Article in English | MEDLINE | ID: mdl-28758988

ABSTRACT

Galectin-3 (Gal-3) is involved in cardiovascular fibrosis and aortic valve (AV) calcification. We hypothesized that Gal-3 pharmacological inhibition with modified citrus pectin (MCP) could reduce aortic and AV remodeling in normotensive rats with pressure overload (PO). Six weeks after aortic constriction, vascular Gal-3 expression was up-regulated in male Wistar rats. Gal-3 overexpression was accompanied by an increase in the aortic media layer thickness, enhanced total collagen, and augmented expression of fibrotic mediators. Further, vascular inflammatory markers as well as inflammatory cells content were greater in aorta from PO rats. MCP treatment (100 mg/kg/day) prevented the increase in Gal-3, media thickness, fibrosis, and inflammation in the aorta of PO rats. Gal-3 levels were higher in AVs from PO rats. This paralleled enhanced AV fibrosis, inflammation, as well as greater expression of calcification markers. MCP treatment prevented the increase in Gal-3 as well as fibrosis, inflammation, and calcification in AVs. Overall, Gal-3 is overexpressed in aorta and AVs from PO rats. Gal-3 pharmacological inhibition blocks aortic and AV remodeling in experimental PO. Gal-3 could be a new therapeutic approach to delay the progression and the development of aortic remodeling and AV calcification in PO.


Subject(s)
Aorta , Aortic Valve Stenosis , Aortic Valve/pathology , Calcinosis , Galectin 3 , Gene Expression Regulation/drug effects , Pectins/pharmacology , Animals , Aorta/metabolism , Aorta/physiopathology , Aortic Valve/drug effects , Aortic Valve/metabolism , Aortic Valve/physiopathology , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Aortic Valve Stenosis/physiopathology , Calcinosis/metabolism , Calcinosis/pathology , Calcinosis/physiopathology , Disease Models, Animal , Galectin 3/antagonists & inhibitors , Galectin 3/biosynthesis , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...