Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
2.
J Clin Med ; 12(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769818

ABSTRACT

The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.

3.
Front Pharmacol ; 13: 970891, 2022.
Article in English | MEDLINE | ID: mdl-36199684

ABSTRACT

Guanine-based purines (GBPs) exert numerous biological effects at the central nervous system through putative membrane receptors, the existence of which is still elusive. To shed light on this question, we screened orphan and poorly characterized G protein-coupled receptors (GPRs), selecting those that showed a high purinoreceptor similarity and were expressed in glioma cells, where GBPs exerted a powerful antiproliferative effect. Of the GPRs chosen, only the silencing of GPR23, also known as lysophosphatidic acid (LPA) 4 receptor, counteracted GBP-induced growth inhibition in U87 cells. Guanine (GUA) was the most potent compound behind the GPR23-mediated effect, acting as the endpoint effector of GBP antiproliferative effects. Accordingly, cells stably expressing GPR23 showed increased sensitivity to GUA. Furthermore, while GPR23 expression was low in a hypoxanthine-guanine phosphoribosyl-transferase (HGPRT)-mutated melanoma cell line showing poor sensitivity to GBPs, and in HGPRT-silenced glioma cells, GPR23-induced expression in both cell types rescued GUA-mediated cell growth inhibition. Finally, binding experiments using [3H]-GUA and U87 cell membranes revealed the existence of a selective GUA binding (KD = 29.44 ± 4.07 nM; Bmax 1.007 ± 0.035 pmol/mg prot) likely to GPR23. Overall, these data suggest GPR23 involvement in modulating responses to GUA in tumor cell lines, although further research needs to verify whether this receptor mediates other GUA effects.

4.
Int J Mol Sci ; 23(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35887132

ABSTRACT

The role of the purinergic signal has been extensively investigated in many tissues and related organs, including the central and peripheral nervous systems as well as the gastrointestinal, cardiovascular, respiratory, renal, and immune systems. Less attention has been paid to the influence of purines in the oral cavity, which is the first part of the digestive apparatus and also acts as the body's first antimicrobial barrier. In this review, evidence is provided of the presence and possible physiological role of the purinergic system in the different structures forming the oral cavity including teeth, tongue, hard palate, and soft palate with their annexes such as taste buds, salivary glands, and nervous fibers innervating the oral structures. We also report findings on the involvement of the purinergic signal in pathological conditions affecting the oral apparatus such as Sjögren's syndrome or following irradiation for the treatment of head and neck cancer, and the use of experimental drugs interfering with the purine system to improve bone healing after damage. Further investigations are required to translate the results obtained so far into the clinical setting in order to pave the way for a wider application of purine-based treatments in oral diseases.


Subject(s)
Sjogren's Syndrome , Taste Buds , Humans , Salivary Glands/pathology , Sjogren's Syndrome/pathology , Tongue
5.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163472

ABSTRACT

Over the last decade, several compounds have been identified for the treatment of obesity. However, due to the complexity of the disease, many pharmacological interventions have raised concerns about their efficacy and safety. Therefore, it is important to discover new factors involved in the induction/progression of obesity. Adipose stromal/stem cells (ASCs), which are mostly isolated from subcutaneous adipose tissue, are the primary cells contributing to the expansion of fat mass. Like other cells, ASCs release nanoparticles known as extracellular vesicles (EVs), which are being actively studied for their potential applications in a variety of diseases. Here, we focused on the importance of the con-tribution of ASC-derived EVs in the regulation of metabolic processes. In addition, we outlined the advantages/disadvantages of the use of EVs as potential next-generation anti-obesity agents.


Subject(s)
Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/cytology , Obesity/metabolism , Adipogenesis , Extracellular Vesicles/transplantation , Homeostasis , Humans , Obesity/therapy , Subcutaneous Fat/cytology , Subcutaneous Fat/metabolism
7.
Biomolecules ; 11(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946568

ABSTRACT

Bone is one of the major tissues that undergoes continuous remodeling throughout life, thus ensuring both organic body growth during development and protection of internal organs as well as repair of trauma during adulthood. Many endogenous substances contribute to bone homeostasis, including purines. Their role has increasingly emerged in recent decades as compounds which, by interacting with specific receptors, can help determine adequate responses of bone cells to physiological or pathological stimuli. Equally, it is recognized that the activity of purines is closely dependent on their interconversion or metabolic degradation ensured by a series of enzymes present at extracellular level as predominantly bound to the cell membrane or, also, as soluble isoforms. While the effects of purines mediated by their receptor interactions have sufficiently, even though not entirely, been characterized in many tissues including bone, those promoted by the extracellular enzymes providing for purine metabolism have not been. In this review, we will try to circumstantiate the presence and the role of these enzymes in bone to define their close relationship with purine activities in maintaining bone homeostasis in normal or pathological conditions.


Subject(s)
Bone and Bones/physiology , Extracellular Fluid/enzymology , Extracellular Fluid/metabolism , Homeostasis , Purines/metabolism , Receptors, Purinergic/metabolism , Animals , Humans , Signal Transduction
8.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35008687

ABSTRACT

The cyclic nucleotides, cAMP and cGMP, are ubiquitous second messengers responsible for translating extracellular signals to intracellular biological responses in both normal and tumor cells. When these signals are aberrant or missing, cells may undergo neoplastic transformation or become resistant to chemotherapy. cGMP-hydrolyzing phosphodiesterases (PDEs) are attracting tremendous interest as drug targets for many diseases, including cancer, where they regulate cell growth, apoptosis and sensitization to radio- and chemotherapy. In breast cancer, PDE5 inhibition is associated with increased intracellular cGMP levels, which is responsible for the phosphorylation of PKG and other downstream molecules involved in cell proliferation or apoptosis. In this review, we provide an overview of the most relevant studies regarding the controversial role of PDE inhibitors as off-label adjuvants in cancer therapy.


Subject(s)
Breast Neoplasms/prevention & control , Breast Neoplasms/therapy , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Animals , Clinical Trials as Topic , Female , Humans , Nitric Oxide/metabolism , Signal Transduction
9.
Int J Mol Sci ; 21(23)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291390

ABSTRACT

Acute or chronic administration of guanosine (GUO) induces anxiolytic-like effects, for which the adenosine (ADO) system involvement has been postulated yet without a direct experimental evidence. Thus, we aimed to investigate whether adenosine receptors (ARs) are involved in the GUO-mediated anxiolytic-like effect, evaluated by three anxiety-related paradigms in rats. First, we confirmed that acute treatment with GUO exerts an anxiolytic-like effect. Subsequently, we investigated the effects of pretreatment with ADO or A1R (CPA, CCPA) or A2AR (CGS21680) agonists 10 min prior to GUO on a GUO-induced anxiolytic-like effect. All the combined treatments blocked the GUO anxiolytic-like effect, whereas when administered alone, each compound was ineffective as compared to the control group. Interestingly, the pretreatment with nonselective antagonist caffeine or selective A1R (DPCPX) or A2AR (ZM241385) antagonists did not modify the GUO-induced anxiolytic-like effect. Finally, binding assay performed in hippocampal membranes showed that [3H]GUO binding became saturable at 100-300 nM, suggesting the existence of a putative GUO binding site. In competition experiments, ADO showed a potency order similar to GUO in displacing [3H]GUO binding, whereas AR selective agonists, CPA and CGS21680, partially displaced [3H]GUO binding, but the sum of the two effects was able to displace [3H]GUO binding to the same extent of ADO alone. Overall, our results strengthen previous data supporting GUO-mediated anxiolytic-like effects, add new evidence that these effects are blocked by A1R and A2AR agonists and pave, although they do not elucidate the mechanism of GUO and ADO receptor interaction, for a better characterization of GUO binding sites in ARs.


Subject(s)
Anxiety/etiology , Anxiety/metabolism , Guanosine/adverse effects , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/metabolism , Animals , Anxiety/psychology , Behavior, Animal , Cell Membrane/metabolism , Darkness , Dose-Response Relationship, Drug , Guanosine/metabolism , Hippocampus/metabolism , Light , Rats , Receptor, Adenosine A1/genetics , Receptor, Adenosine A2A/genetics
10.
Purinergic Signal ; 16(3): 263-287, 2020 09.
Article in English | MEDLINE | ID: mdl-32500422

ABSTRACT

The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.


Subject(s)
Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Osteogenesis/physiology , Receptors, Purinergic/metabolism , Adult , Animals , Humans , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology
11.
Stem Cell Rev Rep ; 15(4): 574-589, 2019 08.
Article in English | MEDLINE | ID: mdl-30955192

ABSTRACT

The ionotropic P2X7 receptor (P2X7R) is involved in bone homeostasis but its role in osteogenesis is controversial. Thus, we investigated the expression of P2X7R and the effects exerted by its modulation in mesenchymal stromal cells from human subcutaneous adipose tissue (S-ASCs), which have potential therapeutic application in bone regenerative medicine. We found that undifferentiated S-ASCs expressed P2X7R and its functional splice variants P2X7AR and P2X7BR. Cell stimulation by P2X7R agonist BzATP (100 µM) neither modified proliferation nor caused membrane pore opening while increasing intracellular Ca2+ levels and migration. The P2X7R antagonist A438079 reversed these effects. However, 25-100 µM BzATP, administered to S-ASCs undergoing osteogenic differentiation, dose-dependently decreased extracellular matrix mineralization and expression of osteogenic transcription factors Runx2, alkaline phosphatase and osteopontin. These effects were not coupled to cell proliferation reduction or to cell death increase, but were associated to decrease in P2X7AR and P2X7BR expression. In contrast, expression of P2X7R, especially P2X7BR isoform, significantly increased during the osteogenic process. Noteworthy, the antagonist A438079, administered alone, at first restrained cell differentiation, enhancing it later. Accordingly, A438079 reversed BzATP effects only in the second phase of S-ASCs osteogenic differentiation. Apyrase, a diphosphohydrolase converting ATP/ADP into AMP, showed a similar behavior. Altogether, findings related to A438079 or apyrase effects suggest an earlier and prevailing pro-osteogenic activity by endogenous ATP and a later one by adenosine derived from endogenous ATP metabolism. Conversely, P2X7R pharmacological stimulation by BzATP, mimicking the effects of high ATP levels occurring during tissue injuries, depressed receptor expression/activity impairing MSC osteogenic differentiation.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells/metabolism , Osteogenesis , Receptors, Purinergic P2X7/metabolism , Subcutaneous Fat/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Humans , Mesenchymal Stem Cells/cytology , Subcutaneous Fat/cytology
12.
Cells ; 9(1)2019 12 29.
Article in English | MEDLINE | ID: mdl-31905754

ABSTRACT

Glioblastoma (GBM) stem cells (GSCs), which contribute to GBM unfavorable prognosis, show high expression levels of ATP/P2X7 receptors (P2X7R). Here, we reported that cells exposure to 2'(3')-O-(4-benzoylbenzoyl)-ATP (BzATP), a P2X7R agonist, up-regulated the expression of markers associated to epithelial-to-mesenchymal transition (EMT), a process likely contributing to GSC malignancy, and increased GSC migration/invasiveness like the known EMT inducer, Transforming Growth Factor ß1 (TGFß1). These effects were coupled to phosphorylation of SMAD2, a downstream effector in the TGFß pathway, suggesting its involvement in P2X7R-mediated activity in GSCs. All BzATP effects, including a decrease in the caspase 3/7 activity in GSC medium, were mostly counteracted by the P2X7R antagonist A438079. Finally, BzATP increased the subunit expression of two main human P2X7R splice variants, the full-length P2X7A and the truncated P2X7B, lacking the carboxylic tail, which have different functional properties depending on their arrangement. Since up-regulation of A/B subunits might favor their assembly into a heterotrimeric P2X7R with great sensitivity towards agonists and cell energy support, this is in line with increased EMT markers expression, cell migration/invasion and GSC survival observed following P2X7R stimulation. As in GBM microenvironment extracellular ATP levels may activate P2X7R, our data suggest a P2X7R role in GBM recurrence/invasiveness.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Biomarkers , Cell Line, Tumor , Cell Movement , Cell Survival/genetics , Glioblastoma/pathology , Humans , Neoplasm Invasiveness , Neoplastic Stem Cells/pathology , Phosphorylation , Signal Transduction , Transforming Growth Factor beta1/metabolism , Tumor Microenvironment
13.
Front Pharmacol ; 9: 110, 2018.
Article in English | MEDLINE | ID: mdl-29515443

ABSTRACT

Mounting evidence suggests that the guanine-based purines stand out as key player in cell metabolism and in several models of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Guanosine (GUO) and guanine (GUA) are extracellular signaling molecules derived from the breakdown of the correspondent nucleotide, GTP, and their intracellular and extracellular levels are regulated by the fine-tuned activity of two major enzymes, purine nucleoside phosphorylase (PNP) and guanine deaminase (GDA). Noteworthy, GUO and GUA, seem to play opposite roles in the modulation of cognitive functions, such as learning and memory. Indeed GUO, despite exerting neuroprotective, anti-apoptotic and neurotrophic effects, causes a decay of cognitive activities, whereas GUA administration in rats results in working memory improvement (prevented by L-NAME pre-treatment). This study was designed to investigate, in a model of SH-SY5Y neuroblastoma cell line, the signal transduction pathway activated by extracellular GUA. Altogether, our results showed that: (i) in addition to an enhanced phosphorylation of ASK1, p38 and JNK, likely linked to a non-massive and transient ROS production, the PKB/NO/sGC/cGMP/PKG/ERK cascade seems to be the main signaling pathway elicited by extracellular GUA; (ii) the activation of this pathway occurs in a pertussis-toxin sensitive manner, thus suggesting the involvement of a putative G protein coupled receptor; (iii) the GUA-induced NO production, strongly reduced by cell pre-treatment with L-NAME, is negatively modulated by the EPAC-cAMP-CaMKII pathway, which causes the over-expression of GDA that, in turn, reduces the levels of GUA. These molecular mechanisms activated by GUA may be useful to support our previous observation showing that GUA improves learning and memory functions through the stimulation of NO signaling pathway, and underscore the therapeutic potential of oral administration of guanine for treating memory-related disorders.

14.
Curr Drug Targets ; 19(16): 1871-1881, 2018.
Article in English | MEDLINE | ID: mdl-29484991

ABSTRACT

BACKGROUND: Glioblastoma Multiforme (GBM) is the most common and lethal brain malignancy. Recent evidence suggests that the presence of stem-like cells (GSCs) inside the tumor with high self-renewal, resistance to chemotherapy and invasiveness/migration potential is associated with poor GBM prognosis. GSC aggressiveness seems to be linked to an important process involved in tumorigenesis and cancer metastasis called Epithelial-to-Mesenchymal Transition (EMT), which is responsible for several biochemical changes and the acquisition of a more mesenchymal phenotype by GSCs, that enhance their migration, invasiveness and resistance to apoptosis. OBJECTIVE: Since previous reports demonstrated that purines, interacting with their own receptors, exerted anti-tumor effects in GBM and derived cells, we tried to investigate the ability of these compounds to reduce tumor cell migration/invasion acting on EMT-associated genes/activators and/or signal pathways. METHODS: Search in the literature of relevant articles related to the objective. RESULTS: Papers examining the activity of purines on EMT signaling pathways/markers in GSCs are still few whereas literature is more abundant as for other kinds of tumors. CONCLUSION: Considering the significance of EMT in GBM aggressiveness and the promising involvement of purines in this process, we think that further research in this regard may open the way towards a new therapeutic approach for the control of GBM invasiveness/recurrence.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Purinergic Antagonists/pharmacology , Purines/therapeutic use , Antineoplastic Agents/therapeutic use , Brain Neoplasms/pathology , Cell Movement/drug effects , Clinical Trials as Topic , Epithelial-Mesenchymal Transition/drug effects , Glioblastoma/pathology , Humans , Molecular Targeted Therapy/methods , Neoplasm Invasiveness/prevention & control , Purinergic Antagonists/therapeutic use , Purines/pharmacology , Receptors, Purinergic/metabolism , Signal Transduction/drug effects , Treatment Outcome
15.
Genes (Basel) ; 9(2)2018 Feb 17.
Article in English | MEDLINE | ID: mdl-29462960

ABSTRACT

Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely "cancer stem cells", are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM.

16.
Auton Neurosci ; 210: 55-64, 2018 03.
Article in English | MEDLINE | ID: mdl-29305058

ABSTRACT

Mutations in the HGPRT1 gene, which encodes hypoxanthine-guanine phosphoribosyltransferase (HGprt), housekeeping enzyme responsible for recycling purines, lead to Lesch-Nyhan disease (LND). Clinical expression of LND indicates that HGprt deficiency has adverse effects on gastrointestinal motility. Therefore, we aimed to evaluate intestinal motility in HGprt knockout mice (HGprt¯). Spontaneous and neurally evoked mechanical activity was recorded in vitro as changes in isometric tension in circular muscle strips of distal colon. HGprt¯ tissues showed a lower in amplitude spontaneous activity and atropine-sensitivity neural contraction compared to control mice. The responses to carbachol and to high KCl were reduced, demonstrating a widespread impairment of contractility. L-NAME was not able in the HGprt¯ tissues to restore the large amplitude contractile activity typical of control. In HGprt¯ colon, a reduced expression of dopaminergic D1 receptor was observed together with the loss of its tonic inhibitory activity present in control-mice. The analysis of inflammatory and oxidative stress in colonic tissue of HGprt¯ mice revealed a significant increase of lipid peroxidation associated with over production of oxygen free radicals. In conclusion, HGprt deficiency in mice is associated with a decrease in colon contractility, not dependent upon reduction of acetylcholine release from the myenteric plexus or hyperactivity of inhibitory signalling. By contrast the increased levels of oxidative stress could partially explain the reduced colon motility in HGprt¯ mice. Colonic dysmotility observed in HGprt¯ mice may mimic the gastrointestinal dysfunctions symptoms of human syndrome, providing a useful animal model to elucidate the pathophysiology of this problem in the LND.


Subject(s)
Gastrointestinal Motility/genetics , Gene Expression Regulation/genetics , Lesch-Nyhan Syndrome/complications , Muscle, Smooth/physiopathology , Animals , Atropine/pharmacology , Benzazepines/pharmacology , Brain/drug effects , Brain/metabolism , Carbachol/pharmacology , Cytokines/metabolism , Disease Models, Animal , Dopamine/metabolism , Enzyme Inhibitors/pharmacology , Evoked Potentials/drug effects , Evoked Potentials/genetics , Face , Gastrointestinal Motility/drug effects , Gene Expression Regulation/drug effects , Hypoxanthine Phosphoribosyltransferase/deficiency , Hypoxanthine Phosphoribosyltransferase/metabolism , In Vitro Techniques , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/pathology , Lesch-Nyhan Syndrome/physiopathology , Lipid Peroxidation/drug effects , Lipid Peroxidation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Neurotransmitter Agents/pharmacology , Reactive Oxygen Species/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
17.
Neurochem Int ; 115: 37-49, 2018 05.
Article in English | MEDLINE | ID: mdl-29061383

ABSTRACT

Purine nucleoside phosphorylase (PNP), a crucial enzyme in purine metabolism which converts ribonucleosides into purine bases, has mainly been found inside glial cells. Since we recently demonstrated that PNP is released from rat C6 glioma cells, we then wondered whether this occurs in normal brain cells. Using rat primary cultures of microglia, astrocytes and cerebellar granule neurons, we found that in basal condition all these cells constitutively released a metabolically active PNP with Km values very similar to those measured in C6 glioma cells. However, the enzyme expression/release was greater in microglia or astrocytes that in neurons. Moreover, we exposed primary brain cell cultures to pro-inflammatory agents such as lipopolysaccharide (LPS) or ATP alone or in combination. LPS alone caused an increased interleukin-1ß (IL-1ß) secretion mainly from microglia and no modification in the PNP release, even from neurons in which it enhanced cell death. In contrast, ATP administered alone to glial cells at high micromolar concentrations significantly stimulated the release of PNP within 1 h, an effect not modified by LPS presence, whereas IL-1ß secretion was stimulated by ATP only in cells primed for 2 h with LPS. In both cases ATP effect was mediated by P2X7 receptor (P2X7R), since it was mimicked by cell exposure to Bz-ATP, an agonist of P2X7R, and blocked by cell pre-treatment with the P2X7R antagonist A438079. Interestingly, ATP-induced PNP release from glial cells partly occurred through the secretion of lysosomal vesicles in the extracellular medium. Thus, during inflammatory cerebral events PNP secretion promoted by extracellular ATP accumulation might concur to control extracellular purine signals. Further studies could elucidate whether, in these conditions, a consensual activity of enzymes downstream of PNP in the purine metabolic cascade avoids accumulation of extracellular purine bases that might concur to brain injury by unusual formation of reactive oxygen species.


Subject(s)
Astrocytes/metabolism , Microglia/metabolism , Purine-Nucleoside Phosphorylase/metabolism , Receptors, Purinergic P2X7/analysis , Adenosine Triphosphate/metabolism , Animals , Brain/metabolism , Glioma/drug therapy , Glioma/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , N-Glycosyl Hydrolases/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/metabolism
18.
Purinergic Signal ; 13(4): 429-442, 2017 12.
Article in English | MEDLINE | ID: mdl-28616713

ABSTRACT

Epithelial to mesenchymal transition (EMT) occurs during embryogenesis or under pathological conditions such as hypoxia, injury, chronic inflammation, or tissue fibrosis. In renal tubular epithelial cells (MDCK), TGF-ß1 induces EMT by reducing or increasing epithelial or mesenchymal marker expression, respectively. In this study, we confirmed that the cAMP analogues, 8-CPT-cAMP or N6-Ph-cAMP, inhibited the TGF-ß1-driven overexpression of the mesenchymal markers ZEB-1, Slug, Fibronectin, and α-SMA. Furthermore, we showed that A1, A2A, P2Y1, P2Y11, and P2X7 purine receptor agonists modulated the TGF-ß1-induced EMT through the involvement of PKA and/or MAPK/ERK signaling. The stimulation of A2A receptor reduced the overexpression of the EMT-related markers, mainly through the cAMP-dependent PKA pathway, as confirmed by cell pre-treatment with Myr-PKI. Both A1 and P2Y1 receptor stimulation exacerbated the TGF-ß1-driven effects, which were reduced by cell pre-treatment with the MAPK inhibitor PD98059, according to the increased ERK1/2 phosphorylation upon receptor activation. The effects induced by P2Y11 receptor activation were oppositely modulated by PKA or MAPK inhibition, in line with the dual nature of the Gs- and Gq-coupled receptor. Differently, P2X7 receptor induced, per se, similar and not additive effects compared to TGF-ß1, after prolonged cell exposure to BzATP. These results suggest a putative role of purine receptors as target for anti-fibrotic agents.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2/metabolism , Animals , Dogs , Fibrosis/metabolism , Madin Darby Canine Kidney Cells , Transforming Growth Factor beta1/metabolism
19.
J Neurochem ; 141(2): 208-221, 2017 04.
Article in English | MEDLINE | ID: mdl-28251649

ABSTRACT

Intracellular purine turnover is mainly oriented to preserving the level of triphosphate nucleotides, fundamental molecules in vital cell functions that, when released outside cells, act as receptor signals. Conversely, high levels of purine bases and uric acid are found in the extracellular milieu, even in resting conditions. These compounds could derive from nucleosides/bases that, having escaped to cell reuptake, are metabolized by extracellular enzymes similar to the cytosolic ones. Focusing on purine nucleoside phosphorylase (PNP) that catalyzes the reversible phosphorolysis of purine (deoxy)-nucleosides/bases, we found that it is constitutively released from cultured rat C6 glioma cells into the medium, and has a molecular weight and enzyme activity similar to the cytosolic enzyme. Cell exposure to 10 µM ATP or guanosine triphosphate (GTP) increased the extracellular amount of all corresponding purines without modifying the levels/activity of released PNP, whereas selective activation of ATP P2Y1 or adenosine A2A metabotropic receptors increased PNP release and purine base formation. The reduction to 1% in oxygen supply (2 h) to cells decreased the levels of released PNP, leading to an increased presence of extracellular nucleosides and to a reduced formation of xanthine and uric acid. Conversely, 2 h cell re-oxygenation enhanced the extracellular amounts of both PNP and purine bases. Thus, hypoxia and re-oxygenation modulated in opposite manner the PNP release/activity and, thereby, the extracellular formation of purine metabolism end-products. In conclusion, extracellular PNP and likely other enzymes deputed to purine base metabolism are released from cells, contributing to the purinergic system homeostasis and exhibiting an important pathophysiological role.


Subject(s)
Glioma/enzymology , Purine-Nucleoside Phosphorylase/metabolism , Animals , Cell Line, Tumor , Rats
20.
Stem Cells Dev ; 26(11): 843-855, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28287912

ABSTRACT

White adipose tissue is a source of mesenchymal stromal/stem cells (MSCs) that are actively studied for their possible therapeutic use in bone tissue repair/remodeling. To better appreciate the osteogenic potential of these cells, we compared some properties of MSCs from human subcutaneous adipose tissue [subcutaneous-adipose stromal cells (S-ASCs)] and dental pulp stem cell (DPSCs) of third-impacted molars, the latter representing a well-established MSC source. Both undifferentiated cell types showed similar fibroblast-like morphology and mesenchymal marker expression. However, undifferentiated S-ASCs displayed a faster doubling time coupled to greater proliferation and colony-forming ability than DPSCs. Also, the osteogenic differentiation of S-ASCs was greater than that of DPSCs, as evaluated by the higher levels of expression of early osteogenic markers Runt-related transcription factor-2 (RUNX2) and alkaline phosphatase at days 3-14 and of extracellular matrix mineralization at days 14-21. Moreover, S-ASCs showed a better colonization of the titanium scaffold. In addition, we investigated whether S-ASC osteogenic commitment was enhanced by adenosine A1 receptor (A1R) stimulation, as previously shown for DPSCs. Although A1R expression was constant during DPSC differentiation, it increased in S-ASC at day 21 from osteogenesis induction. Accordingly, A1R stimulation by the agonist 2-chloro-N6-cyclopentyl-adenosine, added to the cultures at each medium change, stimulated proliferation only in differentiating DPSC and enhanced the osteogenic differentiation earlier in DPSCs than in S-ASCs. These effects were counteracted by cell pretreatment with a selective A1R antagonist. Thus, our findings suggest that S-ASCs could be advantageously used in regenerative orthopedics/dentistry, and locally released or exogenously added purines may play a role in bone repair/remodeling, even though this aspect should be more thoroughly evaluated.


Subject(s)
Cell Differentiation , Dental Pulp/cytology , Mesenchymal Stem Cells/cytology , Osteogenesis , Subcutaneous Fat/cytology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adolescent , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Female , Humans , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/ultrastructure , Osteogenesis/drug effects , Phenotype , Receptor, Adenosine A1/metabolism , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...