Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(19): 13607-13616, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709316

ABSTRACT

Materials exhibiting aggregation-induced emission (AIE) are both highly emissive in the solid state and prompt a strongly red-shifted emission and should therefore pose as good candidates toward emerging near-infrared (NIR) applications of organic semiconductors (OSCs). Despite this, very few AIE materials have been reported with significant emissivity past 700 nm. In this work, we elucidate the potential of ortho-carborane as an AIE-active component in the design of NIR-emitting OSCs. By incorporating ortho-carborane in the backbone of a conjugated polymer, a remarkable solid-state photoluminescence quantum yield of 13.4% is achieved, with a photoluminescence maximum of 734 nm. In contrast, the corresponding para and meta isomers exhibited aggregation-caused quenching. The materials are demonstrated for electronic applications through the fabrication of nondoped polymer light-emitting diodes. Devices employing the ortho isomer achieved nearly pure NIR emission, with 86% of emission at wavelengths longer than 700 nm and an electroluminescence maximum at 761 nm, producing a significant light output of 1.37 W sr-1 m-2.

2.
J Mater Chem C Mater ; 10(15): 5929-5933, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35517642

ABSTRACT

The luminescence and electroluminescence of an ethyne-linked zinc(ii) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (λ > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs.

3.
Molecules ; 28(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36615373

ABSTRACT

There has been a surge in the interest for (semi)transparent photovoltaics (sTPVs) in recent years, since the more traditional, opaque, devices are not ideally suited for a variety of innovative applications spanning from smart and self-powered windows for buildings to those for vehicle integration. Additional requirements for these photovoltaic applications are a high conversion efficiency (despite the necessary compromise to achieve a degree of transparency) and an aesthetically pleasing design. One potential realm to explore in the attempt to meet such challenges is the biological world, where evolution has led to highly efficient and fascinating light-management structures. In this mini-review, we explore some of the biomimetic approaches that can be used to improve both transparent and semi-transparent photovoltaic cells, such as moth-eye inspired structures for improved performance and stability or tunable, coloured, and semi-transparent devices inspired by beetles' cuticles. Lastly, we briefly discuss possible future developments for bio-inspired and potentially bio-compatible sTPVs.


Subject(s)
Biomimetics , Animals , Coleoptera
4.
Angew Chem Int Ed Engl ; 60(47): 25005-25012, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34519412

ABSTRACT

Conjugated polymers are an important class of chromophores for optoelectronic devices. Understanding and controlling their excited state properties, in particular, radiative and non-radiative recombination processes are among the greatest challenges that must be overcome. We report the synthesis and characterization of a molecularly encapsulated naphthalene diimide-based polymer, one of the most successfully used motifs, and explore its structural and optical properties. The molecular encapsulation enables a detailed understanding of the effect of interpolymer interactions. We reveal that the non-encapsulated analogue P(NDI-2OD-T) undergoes aggregation enhanced emission; an effect that is suppressed upon encapsulation due to an increasing π-interchain stacking distance. This suggests that decreasing π-stacking distances may be an attractive method to enhance the radiative properties of conjugated polymers in contrast to the current paradigm where it is viewed as a source of optical quenching.

5.
Chem Sci ; 12(23): 8165-8177, 2021 May 10.
Article in English | MEDLINE | ID: mdl-34194707

ABSTRACT

Efficient charge photogeneration in conjugated polymers typically requires the presence of a second component to act as electron acceptor. Here, we report a novel low band-gap conjugated polymer with a donor/orthogonal acceptor motif: poly-2,6-(4,4-dihexadecyl-4H-cyclopenta [2,1-b:3,4-b']dithiophene)-alt-2,6-spiro [cyclopenta[2,1-b:3,4-b']dithiophene-4,9'-fluorene]-2',7'-dicarbonitrile, referred to as PCPDT-sFCN. The role of the orthogonal acceptor is to spatially isolate the LUMO from the HOMO, allowing for negligible exchange energy between electrons in these orbitals and minimising the energy gap between singlet and triplet charge transfer states. We employ ultrafast and microsecond transient absorption spectroscopy to demonstrate that, even in the absence of a separate electron acceptor, PCPDT-sFCN shows efficient charge photogeneration in both pristine solution and film. This efficient charge generation is a result of an isoenergetic singlet/triplet charge transfer state equilibrium acting as a reservoir for charge carrier formation. Furthermore, clear evidence of enhanced triplet populations, which form in less than 1 ps, is observed. Using group theory, we show that this ultrafast triplet formation is due to highly efficient, quantum mechanically allowed intersystem crossing between the bright, initially photoexcited local singlet state and the triplet charge transfer state. Remarkably, the free charges that form via the charge transfer state are extraordinarily long-lived with millisecond lifetimes, possibly due to the stabilisation imparted by the spatial separation of PCPDT-sFCN's donor and orthogonal acceptor motifs. The efficient generation of long-lived charge carriers in a pristine polymer paves the way for single-material applications such as organic photovoltaics and photodetectors.

6.
iScience ; 24(6): 102545, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34151223

ABSTRACT

Harnessing cost-efficient printable semiconductor materials as near-infrared (NIR) emitters in light-emitting diodes (LEDs) is extremely attractive for sensing and diagnostics, telecommunications, and biomedical sciences. However, the most efficient NIR LEDs suitable for printable electronics rely on emissive materials containing precious transition metal ions (such as platinum), which have triggered concerns about their poor biocompatibility and sustainability. Here, we review and highlight the latest progress in NIR LEDs based on non-toxic and low-cost functional materials suitable for solution-processing deposition. Different approaches to achieve NIR emission from organic and hybrid materials are discussed, with particular focus on fluorescent and exciplex-forming host-guest systems, thermally activated delayed fluorescent molecules, aggregation-induced emission fluorophores, as well as lead-free perovskites. Alternative strategies leveraging photonic microcavity effects and surface plasmon resonances to enhance the emission of such materials in the NIR are also presented. Finally, an outlook for critical challenges and opportunities of non-toxic NIR LEDs is provided.

7.
Light Sci Appl ; 10(1): 18, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33479197

ABSTRACT

The energy gap law (EG-law) and aggregation quenching are the main limitations to overcome in the design of near-infrared (NIR) organic emitters. Here, we achieve unprecedented results by synergistically addressing both of these limitations. First, we propose porphyrin oligomers with increasing length to attenuate the effects of the EG -law by suppressing the non-radiative rate growth, and to increase the radiative rate via enhancement of the oscillator strength. Second, we design side chains to suppress aggregation quenching. We find that the logarithmic rate of variation in the non-radiative rate vs. EG is suppressed by an order of magnitude with respect to previous studies, and we complement this breakthrough by demonstrating organic light-emitting diodes with an average external quantum efficiency of ~1.1%, which is very promising for a heavy-metal-free 850 nm emitter. We also present a novel quantitative model of the internal quantum efficiency for active layers supporting triplet-to-singlet conversion. These results provide a general strategy for designing high-luminance NIR emitters.

8.
J Phys Chem Lett ; 11(20): 8893-8900, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32996314

ABSTRACT

Emphasis was recently placed on the Cs2AgBiBr6 double perovskite as a possible candidate to substitute toxic lead in metal halide perovskites. However, its poor light-emissive features currently make it unsuitable for solid-state lighting. Lanthanide doping is an established strategy to implement luminescence in poorly emissive materials, with the additional advantage of fine-tuning the emission wavelength. We discuss here the impact of Eu and Yb doping on the optical properties of Cs2AgBiBr6 thin films, obtained from the solution processing of hydrothermally synthesized bulk crystalline powders, by combining experiments and density functional theory calculations. Eu(III) incorporation does not lead to the characteristic 5D0 → 7F2 emission feature at 2 eV, while only a weak trap-assisted sub-band gap radiative emission is reported. Oppositely, we demonstrate that incorporated Yb(III) leads to an intense and exclusive photoluminescence emission in the near-infrared as a result of the efficient sensitization of the lanthanide 2F5/2 → 2F7/2 transition.

9.
Chemistry ; 26(70): 16622-16627, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32965707

ABSTRACT

This work reports the first observation of circularly polarized electroluminescence (CPEL) in thin films of self-organized oligothiophenes. Four new 1,4-phenylene and 9H-carbazole-based oligothiophenes were ad hoc designed to ensure efficient spontaneous formation of chiral supramolecular order. They were easily synthesized and their chiroptical properties in thin films were measured. Circularly polarized luminescence (CPL) spectra revealed glum in the order of 10-2 on a wide wavelengths range, originating from their self-organized chiral supramolecular organization. These molecules have reasonable properties as organic semiconductors and for this reason they can constitute the active layer of circularly-polarized organic light-emitting diodes (CP-OLEDs). Thus, we could investigate directly their electroluminescence (EL) and CPEL, without resorting to blends, but rather in a simple multilayer device with basic architecture. This is the first example of a CP-OLED with active layer made only of a small organic compound.

10.
Light Sci Appl ; 9: 70, 2020.
Article in English | MEDLINE | ID: mdl-32351694

ABSTRACT

Visible light communication (VLC) is a wireless technology that relies on optical intensity modulation and is potentially a game changer for internet-of-things (IoT) connectivity. However, VLC is hindered by the low penetration depth of visible light in non-transparent media. One solution is to extend operation into the "nearly (in)visible" near-infrared (NIR, 700-1000 nm) region, thus also enabling VLC in photonic bio-applications, considering the biological tissue NIR semitransparency, while conveniently retaining vestigial red emission to help check the link operativity by simple eye inspection. Here, we report new far-red/NIR organic light-emitting diodes (OLEDs) with a 650-800 nm emission range and external quantum efficiencies among the highest reported in this spectral range (>2.7%, with maximum radiance and luminance of 3.5 mW/cm2 and 260 cd/m2, respectively). With these OLEDs, we then demonstrate a "real-time" VLC setup achieving a data rate of 2.2 Mb/s, which satisfies the requirements for IoT and biosensing applications. These are the highest rates ever reported for an online unequalised VLC link based on solution-processed OLEDs.

11.
Nanoscale ; 12(9): 5444-5451, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32080701

ABSTRACT

Self-assembled monolayers (SAMs) deposited on bottom electrodes are commonly used to tune charge carrier injection or blocking in optoelectronic devices. Beside the enhancement of device performance, the fabrication of multifunctional devices in which the output can be modulated by multiple external stimuli remains a challenging target. In this work, we report the functionalization of an indium tin oxide (ITO) electrode with a SAM of a diarylethene derivative designed for optically control the electronic properties. Following the demonstration of dense SAM formation and its photochromic activity, as a proof-of-principle, an organic light-emitting diode (OLED) embedding the light-responsive SAM-covered electrode was fabricated and characterized. Optically addressing the two-terminal device by irradiation with ultraviolet light doubles the electroluminescence. The original value can be restored reversibly by irradiation with visible light. This expanded functionality is based on the photoinduced modulation of the electronic structure of the diarylethene isomers, which impact the charge carriers' confinement within the emissive layer. This approach could be successfully exploited in the field of opto-communication technology, for example to fabricate opto-electronic logic circuits.

12.
J Org Chem ; 85(1): 207-214, 2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31682123

ABSTRACT

Intermolecular interactions play a fundamental role on the performance of conjugated materials in organic electronic devices, as they heavily influence their optoelectronic properties. Synthetic control over the solid state properties of organic optoelectronic materials is crucial to access real life applications. Perylene diimides (PDIs) are one of the most highly studied classes of organic fluorescent dyes. In the solid state, π-π stacking suppresses their emission, limiting their use in a variety of applications. Here, we report the synthesis of a novel PDI dye that is encapsulated by four alkylene straps. X-ray crystallography indicates that intermolecular π-π stacking is completely suppressed in the crystalline state. This is further validated by the photophysical properties of the dye in both solution and solid state and supported by theoretical calculations. However, we find that the introduction of the encapsulating "arms" results in the creation of charge-transfer states which modify the excited state properties. This article demonstrates that molecular encapsulation can be used as a powerful tool to tune intermolecular interactions and thereby gain an extra level of control over the solid state properties of organic optoelectronic materials.

13.
Nat Nanotechnol ; 14(4): 347-353, 2019 04.
Article in English | MEDLINE | ID: mdl-30778212

ABSTRACT

Organic light-emitting transistors are pivotal components for emerging opto- and nanoelectronics applications, such as logic circuitries and smart displays. Within this technology sector, the integration of multiple functionalities in a single electronic device remains the key challenge. Here we show optically switchable organic light-emitting transistors fabricated through a judicious combination of light-emitting semiconductors and photochromic molecules. Irradiation of the solution-processed films at selected wavelengths enables the efficient and reversible tuning of charge transport and electroluminescence simultaneously, with a high degree of modulation (on/off ratios up to 500) in the three primary colours. Different emitting patterns can be written and erased through a non-invasive and mask-free process, on a length scale of a few micrometres in a single device, thereby rendering this technology potentially promising for optically gated highly integrated full-colour displays and active optical memory.

14.
Nanoscale ; 10(42): 19678-19683, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30328464

ABSTRACT

Graphene nanoflakes and CdSe/ZnS quantum dots were covalently linked in environmentally friendly aqueous solution. Raman spectroscopy and photoluminescence studies, both in solution and on surfaces at the single nanohybrid level, showed evidence of charge transfer between the two nanostructures. The nanohybrids were further incorporated into solar cell devices, demonstrating their potential as light harvesting assemblies.

15.
ACS Appl Mater Interfaces ; 10(39): 33434-33440, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30191706

ABSTRACT

Large area surface microstructuring is commonly employed to suppress light reflection and enhance light absorption in silicon photovoltaic devices, photodetectors, and image sensors. To date, however, there are no simple means to control the surface roughness of III-V semiconductors by chemical processes similar to the metal-assisted chemical etching of black Si. Here, we demonstrate the anisotropic metal-assisted chemical etching of GaAs wafers exploiting the lower etching rate of the monoatomic Ga<111> and <311> planes. By studying the dependence of this process on different crystal orientations, we propose a qualitative reaction mechanism responsible for the self-limiting anisotropic etching and show that the reflectance of the roughened surface of black GaAs reduces up to ∼50 times compared to polished wafers, nearly doubling its absorption. This method provides a new, simple, and scalable way to enhance light absorption and power conversion efficiency of GaAs solar cells and photodetectors.

16.
Adv Mater ; : e1706584, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29987856

ABSTRACT

Due to the so-called energy-gap law and aggregation quenching, the efficiency of organic light-emitting diodes (OLEDs) emitting above 800 nm is significantly lower than that of visible ones. Successful exploitation of triplet emission in phosphorescent materials containing heavy metals has been reported, with OLEDs achieving remarkable external quantum efficiencies (EQEs) up to 3.8% (peak wavelength > 800 nm). For OLEDs incorporating fluorescent materials free from heavy or toxic metals, however, we are not aware of any report of EQEs over 1% (again for emission peaking at wavelengths > 800 nm), even for devices leveraging thermally activated delayed fluorescence (TADF). Here, the development of polymer light-emitting diodes (PLEDs) peaking at 840 nm and exhibiting unprecedented EQEs (in excess of 1.15%) and turn-on voltages as low as 1.7 V is reported. These incorporate a novel triazolobenzothiadiazole-based emitter and a novel indacenodithiophene-based transport polymer matrix, affording excellent spectral and transport properties. To the best of knowledge, such values are the best ever reported for electroluminescence at 840 nm with a purely organic and solution-processed active layer, not leveraging triplet-assisted emission.

17.
J Am Chem Soc ; 140(5): 1622-1626, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29337534

ABSTRACT

We present the synthesis and characterization of a series of encapsulated diketopyrrolopyrrole red-emitting conjugated polymers. The novel materials display extremely high fluorescence quantum yields in both solution (>70%) and thin film (>20%). Both the absorption and emission spectra show clearer, more defined features compared to their naked counterparts demonstrating the suppression of inter and intramolecular aggregation. We find that the encapsulation results in decreased energetic disorder and a dramatic increase in backbone colinearity as evidenced by scanning tunnelling microscopy. This study paves the way for diketopyrrolopyrrole to be used in emissive solid state applications and demonstrates a novel method to reduce structural disorder in conjugated polymers.

18.
Sci Rep ; 7(1): 8351, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827776

ABSTRACT

In this work, the bottom-up template-assisted preparation of high-density lattices (up to 11 · 106 membranes/cm2) of suspended polymer membranes with micrometric size (in the order of few µm2) and sub-micrometric thickness (in the order of hundreds of nm) is demonstrated for both photoluminescent and non-photoluminescent polymers by capillarity-driven solvent evaporation. Solvent evaporation of low concentration polymer solutions drop-cast on an array of open-ended micropipes is shown to lead to polymer membrane formation at the inlet of the micropipes thanks to capillarity. The method is proven to be robust with high-yield (>98%) over large areas (1 cm2) and of general validity for both conjugated and non-conjugated polymers, e.g. poly(9,9-di-n-octylfluorene-alt-benzothiadiazole (F8BT), poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV), polystyrene (PS), thus breaking a new ground on the controlled preparation of polymer micro and nanostructures. Angle dependence and thermal stability of photoluminescence emission arising from F8BT membrane lattices was thorough investigated, highlighting a non-Lambertian photoluminescence emission of membrane lattices with respect to F8BT films. The method is eventually successfully applied to the preparation of both photoluminescent and non-photoluminescent micro Quick Response (µQR) codes using different polymers, i.e. F8BT, MDMO-PPV, PS, thus providing micrometric-sized taggants suitable for anti-counterfeiting applications.

19.
J Am Chem Soc ; 139(32): 11073-11080, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28598611

ABSTRACT

The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and "bright" singlets, allowing thermal population exchange between them and eliminating a significant loss channel in devices. In conjugated polymers, this gap has proved resistant to modification. Here, we introduce a general approach to reduce the singlet-triplet energy gap in fully conjugated polymers, using a donor-orthogonal acceptor motif to spatially separate electron and hole wave functions. This new generation of conjugated polymers allows for a greatly reduced exchange energy, enhancing triplet formation and enabling thermally activated delayed fluorescence. We find that the mechanisms of both processes are driven by excited-state mixing between π-π*and charge-transfer states, affording new insight into reverse intersystem crossing.

20.
Sci Rep ; 7(1): 1611, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28487525

ABSTRACT

We take advantage of a recent breakthrough in the synthesis of α,ß-unfunctionalised 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) moieties, which we symmetrically conjugate with oligothienyls in an unexpectedly stable form, and produce a "metal-free" A-D-A (acceptor-donor-acceptor) oligomer emitting in the near-infrared (NIR) thanks to delocalisation of the BODIPY low-lying lowest unoccupied molecular orbital (LUMO) over the oligothienyl moieties, as confirmed by density functional theory (DFT). We are able to retain a PL efficiency of 20% in the solid state (vs. 30% in dilute solutions) by incorporating such a dye in a wider gap polyfluorene matrix and demonstrate organic light-emitting diodes (OLEDs) emitting at 720 nm. We achieve external quantum efficiencies (EQEs) up to 1.1%, the highest value achieved so far by a "metal-free" NIR-OLED not intentionally benefitting from triplet-triplet annihilation. Our work demonstrates for the first time the promise of A-D-A type dyes for NIR OLEDs applications thereby paving the way for further optimisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...