Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2401603, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815975

ABSTRACT

The ability to promote three-dimensional (3D) self-organization of induced pluripotent stem cells into complex tissue structures called organoids presents new opportunities for the field of developmental biology. Brain organoids have been used to investigate principles of neurodevelopment and neuropsychiatric disorders and serve as a drug screening and discovery platform. However, brain organoid cultures are currently limited by a lacking ability to precisely control their extracellular environment. Here, this work employs 3D bioprinting to generate a high-throughput, tunable, and reproducible scaffold for controlling organoid development and patterning. Additionally, this approach supports the coculture of organoids and vascular cells in a custom architecture containing interconnected endothelialized channels. Printing fidelity and mechanical assessments confirm that fabricated scaffolds closely match intended design features and exhibit stiffness values reflective of the developing human brain. Using organoid growth, viability, cytoarchitecture, proliferation, and transcriptomic benchmarks, this work finds that organoids cultured within the bioprinted scaffold long-term are healthy and have expected neuroectodermal differentiation. Lastly, this work confirms that the endothelial cells (ECs) in printed channel structures can migrate toward and infiltrate into the embedded organoids. This work demonstrates a tunable 3D culturing platform that can be used to create more complex and accurate models of human brain development and underlying diseases.

2.
Adv Healthc Mater ; 9(21): e2000564, 2020 11.
Article in English | MEDLINE | ID: mdl-32959525

ABSTRACT

Delivery of multiple therapeutics has become a preferred method of treating cancer, albeit differences in the biodistribution and pharmacokinetic profiles of individual drugs pose challenges in effectively delivering synergistic drug combinations to and at the tumor site. Here, bicompartmental Janus nanoparticles comprised of domains are reported with distinct bulk properties that allow for independent drug loading and release. Programmable drug release can be triggered by a change in the pH value and depends upon the bulk properties of the polymers used in the respective compartments, rather than the molecular structures of the active agents. Bicompartmental nanoparticles delivering a synergistic combination of lapatinib and paclitaxel result in increased activity against HER2+ breast cancer cells. Surprisingly, the dual drug loaded particles also show significant efficacy toward triple negative breast cancer, even though this cancer model is unresponsive to lapatinib alone. The broad versatility of the nanoparticle platform allows for rapid exploration of a wide range of drug combinations where both their relative drug ratios and temporal release profiles can be optimized.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Antineoplastic Combined Chemotherapy Protocols , Cell Line, Tumor , Drug Combinations , Drug Delivery Systems , Humans , Paclitaxel , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...