Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Physiol ; 104(3): 567-91, 1994 Sep.
Article in English | MEDLINE | ID: mdl-7807061

ABSTRACT

We studied the influence of steady annular light on the kinetics and sensitivity of horizontal cell (HC) responses to modulation of the intensity of small concentric spots in the turtle retina. As shown by previous investigators, when the intensity of the annulus was equal to the mean spot intensity, spot response kinetics were the same as those for the modulation of spatially uniform light. Turning off the annulus attenuated dramatically high-frequency flicker sensitivity and enhanced somewhat low-frequency sensitivity. This phenomenon reflects a modulation of synaptic transfer between cones and second-order neurons that is mediated by cones, and it will be referred to as cone-mediated surround enhancement (CMSE). Our main results are as follows: (a) The change in test-spot response sensitivity and kinetics upon dimming a steady surrounding annulus is a consequence of the change in spatial contrast rather than change in overall light level. (b) Introduction of moderate contrast between the mean spot intensity and steady surrounding light intensity causes a marked change in spot response kinetics. (c) The dependence of spot response kinetics on surrounding light can be described by a phenomenological model in which the steady state gain and the time constant of one or two single-stage, low-pass filters increase with decreasing annular light intensity (d) The effect of surrounding light on spot responses of a given HC is not determined by change in the steady component of the membrane potential of that cell. (e) Light outside the receptive field of an HC can affect that cell's spot response kinetics. (f) In an expanding annulus experiment, the distance over which steady annular light affects spot response kinetics varies among HCs and can be quite different even between two cells with closely matched receptive field sizes. (g) The degree of CMSE is correlated with HC receptive field size. This correlation suggests that part of the enhancement mechanism is located in the HC. Taken together, our results suggest the involvement of the inner retina in CMSE.


Subject(s)
Retinal Cone Photoreceptor Cells/physiology , Retinal Ganglion Cells/physiology , Synaptic Transmission/physiology , Animals , Membrane Potentials , Photic Stimulation , Turtles
2.
Biophys J ; 60(1): 217-37, 1991 Jul.
Article in English | MEDLINE | ID: mdl-1653050

ABSTRACT

Light adaptation in cones was characterized by measuring the changes in temporal frequency responses to sinusoidal modulation of light around various mean levels spanning a range of four log units. We have shown previously that some aspects of cone adaptation behavior can be accounted for by a biochemical kinetic model for phototransduction in which adaptation is mediated largely by a sigmoidal dependence of guanylate cyclase activity on the concentration of free cytoplasmic Ca2+, ([Ca2+]i) (Sneyd and Tranchina, 1989). Here we extend the model by incorporating electrogenic Na+/K+ exchange, and the model is put to further tests by simulating experiments in the literature. It accounts for (a) speeding up of the impulse response, transition from monophasic to biphasic waveform, and improvement in contrast sensitivity with increasing background light level, I0; (b) linearity of the response to moderate modulations around I0; (c) shift of the intensity-response function (linear vs. log coordinates) with change in I0 (Normann and Perlman, 1979); the dark-adapted curve adheres closely to the Naka-Rushton equation; (d) steepening of the sensitivity vs. I0 function with [Ca2+]i fixed at its dark level, [Ca2+]i dark; (Matthews et al., 1988, 1990); (e) steepening of the steady-state intensity-response function when [Ca2+]i is held fixed at its dark level (Matthews et al., 1988; 1990); (f) shifting of a steep template saturation curve for normalized photocurrent vs. light-step intensity when the response is measured at fixed times and [Ca2+]i is held fixed at [Ca2+]i dark (Nakatani and Yau, 1988). Furthermore, the predicted dependence of guanylate cyclase activity on [Ca2+] closely matches a cooperative inhibition equation suggested by the experimental results of Koch and Stryer (1988) on cyclase activity in bovine rods. Finally, the model predicts that some changes in response kinetics with background light will still be present, even when [Ca2+]i is held fixed at [Ca2]i dark.


Subject(s)
Models, Biological , Photoreceptor Cells/physiology , Animals , Calcium/physiology , Cyclic GMP/physiology , GTP-Binding Proteins/physiology , In Vitro Techniques , Kinetics , Light , Mathematics , Photic Stimulation , Photoreceptor Cells/radiation effects , Potassium/metabolism , Sodium/metabolism , Turtles
SELECTION OF CITATIONS
SEARCH DETAIL
...