Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cell Med ; 1(2): 81-92, 2010.
Article in English | MEDLINE | ID: mdl-26966632

ABSTRACT

Hepatocytes are vulnerable to loss of function and viability in culture. Modified culture methods have been applied to maintain their functional status. Heterotypic interactions between hepatocytes and nonparenchymal neighbors in liver milieu are thought to modulate cell differentiation. Cocultivation of hepatocyte with various cell types has been applied to mimic the hepatic environment. Bone marrow stromal cells (BMSC) are plastic cell lines capable of transforming to other cell types. In this study hepatocyte coculture with BMSCs achieved long-term function of human hepatocytes in culture for 4 weeks. In vitro functional status of human hepatocytes in BMSC coculture was compared with fibroblast coculture and collagen culture by measuring albumin, human-α-1-antitrypsin (hAAT), urea secretion, CYP450 activity, and staining for intracellular albumin and glycogen. After 2 weeks in culture hepatocytes were retrieved and transplanted to severe combined immunodeficiency/albumin linked-urokinase type plasminogen activator (SCID Alb-uPA) mice and engraft-ment capacity was analyzed by human hepatic-specific function measured by hAAT levels in mouse serum, and Alu staining of mouse liver for human hepatocytes. Hepatocytes from BMSC coculture had significantly higher albumin, hAAT secretion, urea production, and cytochrome P450 (CYP450) activity than other culture groups. Staining confirmed the higher functional status in BMSC coculture. Transplantation of hepatocytes detached from BMSC cocultures showed significantly higher engraftment function than hepatocytes from other culture groups measured by hAAT levels in mouse serum. In conclusion, BMSC coculture has excellent potential for hepatocyte function preservation in vitro and in vivo after transplant. It is possible to use BMSC hepatocyte coculture as a supply of cell therapy in liver disease.

2.
Transplant Proc ; 40(10): 3289-93, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19100374

ABSTRACT

Safe and effective xenotransplantation would provide a valuable answer to many of the limitations of allogenic transplantation. Such limitations include scarcity of organ supply and morbidity to donors in cases of living-related donor transplantation. The main hurdle to the efficacious application of xenotransplantation in clinical medicine is the fierce host immune response to xenografts. This immune response is embodied in 3 different types of xenograft rejection. Both hyperacute rejection and delayed xenograft rejection are mediated by natural antibodies and are concerned primarily with whole organ rejection. Cellular xenograft rejection (CXR), on the other hand, is concerned with both whole organ and CXR and is mediated by innate immunity rather than natural antibodies. Macrophages, which are cells of the innate immune system, play a role in all 3 types of xenograft rejection (not just CXR). They impart their effects both directly and through T-cell activation.


Subject(s)
Graft Rejection/physiopathology , Macrophages/physiology , Transplantation, Heterologous/adverse effects , Animals , Antibody Formation , CD4-Positive T-Lymphocytes/immunology , Cercopithecidae , Graft Rejection/classification , Graft Rejection/etiology , Graft Rejection/immunology , Humans , Macrophages/immunology , Organ Transplantation/adverse effects , Phagocytosis , Transplantation, Heterologous/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...