Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 138: 74-80, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26037819

ABSTRACT

Chromium stable isotopes are of interest in many geochemical studies as a tool to identify Cr(VI) reduction and/or dilution in groundwater aquifers. For such studies the short term stability of Cr(VI) in water samples is required before the laboratory analyses can be carried out. Here the short term stability of Cr(VI) in groundwater samples was studied using an isotope approach. Based on commonly available methods for Cr(VI) stabilization, water samples were filtered and the pH value was adjusted to be equal to or greater than 8 before Cr isotope analysis. Based on our Cr isotope data (expressed as δ(53)CrNIST979), Cr(VI) was found to be unstable over short time periods in anthropogenically contaminated groundwater samples regardless of water treatment (e.g., pH adjustment, different storage temperatures). Based on our laboratory experiments, δ(53)CrNIST979 of the Cr(VI) pool was found to be unstable in the presence of dissolved Fe(II), Mn(IV) and/or SO2. Threshold concentrations of Fe(II) causing Cr(VI) reduction range between 10 mg L(-1) and 100 mg L(-1)and less than 1 mg L(-1) for Mn. Hence our isotope data show that water samples containing Cr(VI) should be processed on-site through anion column chemistry to avoid any isotope shifts.


Subject(s)
Chromium/analysis , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Chromium Isotopes/analysis
2.
Environ Sci Technol ; 48(11): 6089-96, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24779992

ABSTRACT

Carcinogenic effects of hexavalent chromium in waters are of concern in many countries worldwide. We explored Cr isotope systematics at 11 sites in the Czech Republic and Poland. Geogenic Cr pollution was associated with serpentinite bodies at former convergent plate margins, while anthropogenic Cr pollution resulted from electroplating, tanning, and the chemical industry. Cr(VI) concentration in geogenic waters was less than 40 ppb. Anthropogenic waters contained up to 127,000 ppb Cr(VI). At both geogenic and anthropogenic sites, where known, the source of pollution had a low δ53Cr (<1‰). δ53Cr of geogenic and anthropogenic waters was up to 3.9 and 5.8‰, respectively. At both serpentinite-dominated and industrial sites, δ53Cr(VI)aq was shifted toward higher values, compared to the pollution source. At the industrial sites, this positive δ53Cr shift was related to Cr(VI) reduction, a process known to fractionate Cr isotopes. At geogenic sites, the origin of high δ53Cr(VI)aq is tentatively ascribed to preferential release of 53Cr during oxidation of soil Cr(III) and its mobilization to water. δ53Cr(VI) of industrially contaminated waters was significantly higher (p<0.001) compared to δ53Cr of waters carrying geogenic Cr(VI), implying that either the effective fractionation factor or process extent was greater for Cr(VI) reduction than for Cr(III) oxidation.


Subject(s)
Chromium Isotopes/analysis , Chromium/analysis , Environmental Pollution/analysis , Industrial Waste/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Chromium/chemistry , Chromium Isotopes/chemistry , Czech Republic
3.
Chemosphere ; 95: 402-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24139156

ABSTRACT

This work investigates the mechanisms behind Cr(VI) biosorption/reduction on three biomaterials (brewers draff, grape waste and synthetic humic acid). Coupled Cr isotope analysis with ICP-OES, XPS and SEM was tested as a novel approach to study the reduction of Cr(VI) by the biomaterials. The Cr(VI) biosorption process was accompanied with heavier Cr isotopes enrichment in the remaining Cr(VI) fraction. A significant fractionation of Cr stable isotopes was observed with no significant pH effect; δ(53)Cr of the remaining fraction ranged from 0.2‰ to 1.9‰ while δ(53)Cr of the product (sorbed Cr) ranged from -1.2‰ to -2.8‰. The Rayleigh fractionation model fitted well the measured data and Cr isotope analysis provides thus an efficient tool to quantify Cr(VI) reduction by different biomaterials. In general, the sorption/reduction potential of the three studied biomaterials decreased in the following order: grape waste>humic acids>brewers draff.


Subject(s)
Chemical Fractionation , Chromium/chemistry , Isotopes/chemistry , Adsorption , Chromium/metabolism , Environmental Restoration and Remediation/methods , Models, Chemical , Oxidation-Reduction
4.
Environ Sci Pollut Res Int ; 20(6): 4205-15, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23247513

ABSTRACT

The aim of this study is to investigate how the presence of Cu influences tebuconazole (Teb) sorption onto contrasting soil types and two important constituents of the soil sorption complex: hydrated Fe oxide and humic substances. Tebuconazole was used in commercial form and as an analytical-grade chemical at different Teb/Cu molar ratios (1:4, 1:1, 4:1, and Teb alone). Increased Cu concentrations had a positive effect on tebuconazole sorption onto most soils and humic substances, probably as a result of Cu-Teb tertiary complexes on the soil surfaces. Tebuconazole sorption increased in the following order of different Teb/Cu ratios 1:4>1:1>4:1>without Cu addition, with the only exception for the Leptosol and ferrihydrite. The highest K f value was observed for humic substances followed by ferrihydrite, the Cambisol, the Arenosol, and the Leptosol. The sorption of analytical-grade tebuconazole onto all matrices was lower, but the addition of Cu supported again tebuconazole sorption. The Teb/Cu ratio with the highest Cu addition (1:4) exhibited the highest K f values in all matrices with the exception of ferrihydrite. The differences in tebuconazole sorption can be attributed to the additives present in the commercial product. This work proved the importance of soil characteristics and composition of the commercially available pesticides together with the presence of Cu on the behavior of tebuconazole in soils.


Subject(s)
Copper/chemistry , Ferric Compounds/chemistry , Humic Substances , Soil/chemistry , Triazoles/chemistry , Adsorption , Chemical Phenomena , Pesticides/chemistry , Soil Pollutants/chemistry
5.
J Environ Sci Health B ; 47(4): 336-42, 2012.
Article in English | MEDLINE | ID: mdl-22428895

ABSTRACT

The aim of the present study was to investigate tebuconazole sorption on common soil minerals (birnessite, ferrihydrite, goethite, calcite and illite) and humic acids (representing soil organic matter). Tebuconazole was used (i) in the commercial form Horizon 250 EW and (ii) as an analytical grade pure chemical. In the experiment with the commercially available tebuconazole, a significant pH-dependent sorption onto the oxides was observed (decreasing sorption with increasing pH). The highest sorption was found for ferrihydrite due to its high specific surface area, followed by humic acids, birnessite, goethite and illite. No detectable sorption was found for calcite. The sorption of analytical grade tebuconazole on all selected minerals was significantly lower compared to the commercial product. The sorption was the highest for humic acids, followed by ferrihydrite and illite and almost negligible for goethite and birnessite without any pH dependence. Again, no sorption was observed for calcite. The differences in sorption of the commercially available and analytical grade tebuconazole can be attributed to the additives (e.g., solvents) present in the commercial product. This work proved the importance of soil mineralogy and composition of the commercially available pesticides on the behavior of tebuconazole in soils.


Subject(s)
Humic Substances/analysis , Minerals/chemistry , Pesticides/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Triazoles/chemistry , Adsorption
6.
Rapid Commun Mass Spectrom ; 25(8): 1037-42, 2011 Apr 30.
Article in English | MEDLINE | ID: mdl-21452380

ABSTRACT

Electrospray ionization mass spectrometry (ESI-MS) is used to probe the complex formation between tebuconazole (1) and copper(II) salts, which both are commonly used fungicides in agriculture. Experiments with model solutions containing 1 and CuCl(2) reveal the initial formation of the copper(II) species [(1)CuCl](+) and [(1)(2)CuCl](+) which undergo reduction to the corresponding copper(I) ions [(1)Cu](+) and [(1)(2)Cu](+) under more drastic ionization conditions in the ESI source. In additional experiments, copper/tebuconazole complexes were also detected in samples made from soil solutions of various origin and different amount of mineralization. The direct sampling of such solutions via ESI-MS is thus potentially useful for understanding of the interactions between copper(II) salts and tebuconazole in environmental samples.


Subject(s)
Copper/chemistry , Fungicides, Industrial/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Triazoles/chemistry , Oxidation-Reduction
7.
Environ Int ; 36(1): 138-151, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19913914

ABSTRACT

The contamination of agricultural soils with inorganic (Cu-based) and organic pesticides (including their residues) presents a major environmental and toxicological concern. This review summarizes available studies published on the contamination of vineyard soils throughout the world with Cu-based and synthetic organic fungicides. It focuses on the behavior of these contaminants in vineyard soils and the associated environmental and toxicological risks. The concentrations of Cu in soils exceed the legislative limits valid in the EU in the vast majority of the studied vineyards. Regarding the environmental and toxicological hazards associated with the extensive use of fungicides, the choice of fungicides should be performed carefully according to the physico-chemical properties of the soils and climatic and hydrogeological characteristics of the vine-growing regions.


Subject(s)
Fungicides, Industrial/toxicity , Pesticide Residues/toxicity , Soil Pollutants/toxicity , Agriculture , Copper/analysis , Copper/toxicity , Environmental Monitoring , Environmental Pollution/statistics & numerical data , Fungicides, Industrial/analysis , Pesticide Residues/analysis , Soil/analysis , Soil Pollutants/analysis , Vitis , Wine
SELECTION OF CITATIONS
SEARCH DETAIL
...