Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(11): 18330-18347, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221637

ABSTRACT

Miniaturized mid-infrared spectrometers present opportunities for applications that range from health monitoring to agriculture. One approach combines arrays of spectral filters with infrared photodetectors, called filter-array detector-array (FADA) microspectrometers. A paper recently reported a FADA microspectrometer in tandem with machine learning for chemical identification. In that work, a FADA microspectrometer with 20 filters was assembled and tested. The filters were band-pass, or band-stop designs that evenly spanned the microspectrometer's operating wavelength range. However, given that a machine learning classifier can be trained on an arbitrary filter basis, it is not apparent that evenly spaced filters are optimal. Here, through simulations with noise, we use a genetic algorithm to optimize six bandpass filters to best identify liquid and gaseous chemicals. We report that the classifiers trained with the optimized filter sets outperform those trained with evenly spaced filter sets and those handpicked to target the absorption bands of the chemicals investigated.


Subject(s)
Machine Learning , Refractometry
2.
Opt Lett ; 47(10): 2490-2493, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35561383

ABSTRACT

Mid-infrared (MIR) spectroscopy has numerous industrial applications and is usually performed with Fourier-transform infrared (FTIR) spectrometers. While these work well for many purposes, there is currently much interest in alternative approaches that are smaller and lighter, i.e., MIR microspectrometers. Here we investigate all-dielectric metasurfaces as spectral filters for MIR microspectrometers. Two metasurface types are studied. For the first, we design, fabricate, and test a metasurface with a narrow and angularly tunable transmission stop band. We use it to reconstruct the transmission spectra of various materials. The second metasurface, investigated theoretically, possesses narrow passband features via symmetry-protected bound states in the continuum.

3.
Nano Lett ; 21(4): 1735-1741, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33544611

ABSTRACT

Metasurface-based holography presents opportunities for applications that include optical displays, data storage, and optical encryption. Holograms that control polarization are sometimes referred to as vectorial holograms. Most studies on this topic have concerned devices that display different images when illuminated with different polarization states. Fewer studies have demonstrated holographic images whose polarization varies spatially, i.e., as a function of the position within the image. Here, we experimentally demonstrate a vectorial hologram that produces an image with a spatially continuous distribution of polarization states, for the first time to our knowledge. An unlimited number of polarization states can be achieved within the image. Furthermore, the holographic image and its polarization map (polarization vs position in image) are independent. The same image can be thus encoded with different polarization maps. As far as we know, our approach is conceptually new. We anticipate that it could broaden the application scope of metasurface holography.

4.
Nano Lett ; 20(1): 320-328, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31829611

ABSTRACT

Spectroscopy is a cornerstone in the field of optics. Conventional spectrometers generally require two elements. The first provides wavelength selectivity, for example, diffraction grating or Michelson interferometer. The second is a detector (or detector array). Many applications would benefit from very small and lightweight spectrometers. This motivates us to investigate what may be regarded as an ultimate level of miniaturization for a spectrometer, in which it consists solely of a detector array. We demonstrate a chip containing 24 pixels, each comprising a silicon nanowire (Si NW) array photodetector formed above a planar photodetector. The NWs are structurally colored, enabling us to engineer the responsivity spectra of all photodetectors in the chip. Each pixel thus combines wavelength selectivity and photodetection functions. We demonstrate the use of our chip to reconstruct the spectrum of an unknown light source impinging upon it. This is achieved by an algorithm that takes as its inputs the measured photocurrents from the pixels and a library of their responsivity spectra.

5.
Sci Rep ; 9(1): 13537, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31537829

ABSTRACT

Miniaturized spectrometers are advantageous for many applications and can be achieved by what we term the filter-array detector-array (FADA) approach. In this method, each element of an optical filter array filters the light that is transmitted to the matching element of a photodetector array. By providing the outputs of the photodetector array and the filter transmission functions to a reconstruction algorithm, the spectrum of the light illuminating the FADA device can be estimated. Here, we experimentally demonstrate an array of 101 band-pass transmission filters that span the mid- to long-wave infrared (6.2 to 14.2 µm). Each filter comprises a sub-wavelength array of coaxial apertures in a gold film. As a proof-of-principle demonstration of the FADA approach, we use a Fourier transform infrared (FTIR) microscope to record the optical power transmitted through each filter. We provide this information, along with the transmission spectra of the filters, to a recursive least squares (RLS) algorithm that estimates the incident spectrum. We reconstruct the spectrum of the infrared light source of our FTIR and the transmission spectra of three polymer-type materials: polyethylene, cellophane and polyvinyl chloride. Reconstructed spectra are in very good agreement with those obtained via direct measurement by our FTIR system.

6.
Opt Lett ; 43(18): 4481-4484, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30211895

ABSTRACT

We computationally reconstruct short- to long-wave infrared spectra using an array of plasmonic metasurface filters. We illuminate the filter array with an unknown spectrum and measure the optical power transmitted through each filter with an infrared microscope to emulate a filter-detector array system. We then use the recursive least squares method to determine the unknown spectrum. We demonstrate our method with light from a blackbody. We also demonstrate it with spectra generated by passing the light from the blackbody through various materials. Our approach is a step towards miniaturized spectrometers spanning the short- to long-wave infrared based on filter-detector arrays.

7.
Opt Lett ; 41(13): 3146-8, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27367123

ABSTRACT

The highest resonant transmission through an array of holes perforated in metallic screens occurs when the dielectric constant of the substrate, the superstrate, and the hole are the same. Changes in the refractive index of the homogenous environment also produce the largest shift in resonances per refractive index unit. In this Letter, we first propose and apply a technique in realization of a freestanding bi-periodic array of holes perforated in a silver film. We then show both numerically and experimentally that shifts in (1,0) and (0,1) modes in response to changes in the refractive index of the surrounding dielectric provide a mechanism for realization of a miniaturized tunable quarter-wave plate that operates in an extraordinary optical transmission mode with a high throughput and a near unity state of circularly polarized light.

8.
ACS Nano ; 10(4): 4704-11, 2016 04 26.
Article in English | MEDLINE | ID: mdl-26982625

ABSTRACT

Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photocatalysis, photovoltaics, and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multistack layered configuration to achieve broadband, near-unit light absorption, which is spatially localized on the nanoparticle layer. We show that this enhanced light absorbance leads to ∼40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where (i) the photons have energies higher than the Schottky junctions and (ii) the absorption of light is localized on the metal nanoparticles.

9.
Nat Commun ; 6: 10051, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26628047

ABSTRACT

The behaviour of light transmitted through an individual subwavelength aperture becomes counterintuitive in the presence of surrounding 'decoration', a phenomenon known as the extraordinary optical transmission. Despite being polarization-sensitive, such an individual nano-aperture, however, often cannot differentiate between the two distinct spin-states of photons because of the loss of photon information on light-aperture interaction. This creates a 'blind-spot' for the aperture with respect to the helicity of chiral light. Here we report the development of a subwavelength aperture embedded with metasurfaces dubbed a 'meta-aperture', which breaks this spin degeneracy. By exploiting the phase-shaping capabilities of metasurfaces, we are able to create specific meta-apertures in which the pair of circularly polarized light spin-states produces opposite transmission spectra over a broad spectral range. The concept incorporating metasurfaces with nano-apertures provides a venue for exploring new physics on spin-aperture interaction and potentially has a broad range of applications in spin-optoelectronics and chiral sensing.

10.
Nanoscale ; 7(33): 13816-21, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26223481

ABSTRACT

Here we present an application of a high throughput nanofabrication technique to the creation of a plasmonic metasurface and demonstrate its application to the enhancement and control of radiation by quantum dots (QDs). The metasurface consists of an array of cold-forged rectangular nanocavities in a thin silver film. High quantum efficiency graded alloy CdSe/CdS/ZnS quantum dots were spread over the metasurface and the effects of the plasmon-exciton interactions characterised. We found a four-fold increase in the QDs radiative decay rate and emission brightness, compared to QDs on glass, along with a degree of linear polarisation of 0.73 in the emitted field. Such a surface could be easily integrated with current QD display or organic solar cell designs.

11.
Opt Express ; 21(23): 28450-5, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514357

ABSTRACT

Here we demonstrate the fabrication and characterization of a plasmonic wave plate. The device uses detuned, orthogonal nanometric apertures that support localized surface plasmon resonances on their interior walls. A device was fabricated in a thin silver film using focused ion beam milling and standard polarization tomography used to determine its Mueller matrix. We demonstrate a device that can convert linearly polarized light to light with an overall degree of polarization of 88% and a degree of circular polarization of 86% at a particular wavelength of 702 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...