Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Appl Microbiol ; 50: 3-35, 2001.
Article in English | MEDLINE | ID: mdl-11677687
2.
Appl Environ Microbiol ; 67(11): 5179-89, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11679343

ABSTRACT

The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C(20:1) and cy-C(21) fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C(18:0). These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C(18) and C(20) alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C(20:1) and cy-C(21), plus a series of iso-branched fatty acids (i-C(15:0) to i-C(21:0)), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in (13)C relative to source water CO(2) by 10.9 and 17.2 per thousand, respectively. The C(20-21) fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6 per thousand, respectively. The biomass of T. ruber grown on CO(2) was depleted in (13)C by only 3.3 per thousand relative to C source. In contrast, biomass was depleted by 19.7 per thousand when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3 per thousand). The depletion in the C(20-21) fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO(2). Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region.


Subject(s)
Bacteria/chemistry , Bacteria/classification , Carbon Isotopes/analysis , Fresh Water/microbiology , Lipids/analysis , Bacteria/genetics , Biofilms , DNA, Bacterial/genetics , Ecosystem , Genes, rRNA , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Temperature
3.
Trends Microbiol ; 9(2): 79-86, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11173247

ABSTRACT

Hydrothermal systems have prevailed throughout geological history on earth, and ancient ARCHAEAN hydrothermal deposits could provide clues to understanding earth's earliest biosphere. Modern hydrothermal systems support a plethora of microorganisms and macroorganisms, and provide good comparisons for paleontological interpretation of ancient hydrothermal systems. However, all of the microfossils associated with ancient hydrothermal deposits reported to date are filamentous, and limited STABLE ISOTOPE analysis suggests that these microfossils were probably autotrophs. Therefore, the morphology and mode of carbon metabolism are attributes of microorganisms from modern hydrothermal systems that provide valuable information for interpreting the geological record using morphological and isotopic signatures.


Subject(s)
Archaea/classification , Bacteria/classification , Fossils , Hot Temperature , Seawater/microbiology , Archaea/isolation & purification , Bacteria/isolation & purification , Carbon Isotopes/analysis , Ecosystem
4.
Nature ; 407(6804): 626-9, 2000 Oct 05.
Article in English | MEDLINE | ID: mdl-11034210

ABSTRACT

Microbialites are organosedimentary structures that can be constructed by a variety of metabolically distinct taxa. Consequently, microbialite structures abound in the fossil record, although the exact nature of the biogeochemical processes that produced them is often unknown. One such class of ancient calcareous structures, Epiphyton and Girvanella, appear in great abundance during the Early Cambrian. Together with Archeocyathids, stromatolites and thrombolites, they formed major Cambrian reef belts. To a large extent, Middle to Late Cambrian reefs are similar to Precambrian reefs, with the exception that the latter, including terminal Proterozoic reefs, do not contain Epiphyton or Girvanella. Here we report the discovery in Pavilion Lake, British Columbia, Canada, of a distinctive assemblage of freshwater calcite microbialites, some of which display microstructures similar to the fabrics displayed by Epiphyton and Girvanella. The morphologies of the modern microbialites vary with depth, and dendritic microstructures of the deep water (> 30 m) mounds indicate that they may be modern analogues for the ancient calcareous structures. These microbialites thus provide an opportunity to study the biogeochemical interactions that produce fabrics similar to those of some enigmatic Early Cambrian reef structures.


Subject(s)
Fossils , Water Microbiology , Bacteria , Biological Evolution , British Columbia , Cyanobacteria , Ecosystem
6.
Ciba Found Symp ; 202: 150-70; discussion 170-3, 1996.
Article in English | MEDLINE | ID: mdl-9243015

ABSTRACT

To enhance our ability to extract palaeobiological and palaeoenvironmental information from ancient thermal spring deposits, we have studied the processes responsible for the development and preservation of stromatolites in modern subaerial thermal spring systems in Yellowstone National Park (USA). We investigated specimens collected from silica-depositing thermal springs along the thermal gradient using petrographic techniques and scanning electron microscopy. Although it is known that thermophilic cyanobacteria control the morphogenesis of thermal spring stromatolites below 73 degrees C, we have found that biofilms which contain filamentous thermophiles contribute to the microstructural development of subaerial geyserites that occur along the inner rims of thermal spring pools and geyser effluents. Biofilms intermittently colonize the surfaces of subaerial geyserites and provide a favoured substrate for opaline silica precipitation. We have also found that the preservation of biotically produced microfabrics of thermal spring sinters reflects dynamic balances between rates of population growth, decomposition of organic matter, silica deposition and early diagenesis. Major trends in preservation of thermophilic organisms along the thermal gradient are defined by differences in the mode of fossilization, including replacement, encrustation and permineralization.


Subject(s)
Fossils , Silicon Dioxide/chemistry , Temperature , Water/chemistry , Bacteria , Biofilms , Cyanobacteria , Fresh Water/chemistry , Fresh Water/microbiology , Hot Temperature , Hydrogen-Ion Concentration , Microscopy, Electron , Plants , Wyoming
SELECTION OF CITATIONS
SEARCH DETAIL
...