Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Atmos Environ (1994) ; 327: 1-7, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38846931

ABSTRACT

The US Environmental Protection Agency (EPA) estimates on-road vehicles emissions using the Motor Vehicle Emission Simulator (MOVES). We developed updated ammonia emission rates for MOVES based on road-side exhaust emission measurements of light-duty gasoline and heavy-duty diesel vehicles. The resulting nationwide on-road vehicle ammonia emissions are 1.8, 2.1, 1.8, and 1.6 times higher than the MOVES3 estimates for calendar years 2010, 2017, 2024, and 2035, respectively, primarily due to an increase in light-duty gasoline vehicle NH3 emission rates. We conducted an air quality simulation using the Community Multi-Scale Air Quality (CMAQv5.3.2) model to evaluate the sensitivity of modeled ammonia and fine particulate matter (PM2.5) concentrations in calendar year 2017 using the updated on-road vehicle ammonia emissions. The average monthly urban ammonia ambient concentrations increased by up to 2.3 ppbv in January and 3.0 ppbv in July. The updated on-road NH3 emission rates resulted in better agreement of modeled ammonia concentrations with 2017 annual average ambient ammonia measurements, reducing model bias by 5.8 % in the Northeast region. Modeled average winter PM2.5 concentrations increased in urban areas, including enhancements of up to 0.5 µg/m3 in the northeast United States. The updated ammonia emission rates have been incorporated in MOVES4 and will be used in future versions of the NEI and EPA's modeling platforms.

2.
Environ Int ; 184: 108473, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38340404

ABSTRACT

Uncertainty in ammonia (NH3) emissions causes the inaccuracy of fine particulate matter simulations, which is associated with human health. To address this uncertainty, in this work, we employ the iterative finite difference mass balance (iFDMB) technique to revise NH3 emissions over East Asia using the Cross-track Infrared Sounder (CRIS) satellite for July, August, and September 2019. Compared to the emissions, the revised NH3 emissions show an increase in China, particularly in the North China Plain (NCP) region, corresponding to agricultural land use in July, August, and September and a decrease in South Korea in September. The enhancement in NH3 emissions resulted in a remarkable increase in concentrations of NH3 by 5 ppb. in July and September, there is an increase in ammonium (NH4+) and nitrate (NO3-) concentrations by 5 µg/m3, particularly in the NCP region, while in August, both NH4+ and NO3- concentrations exhibit a decrease. For sulfate (SO42-), in August and September, the concentrations decreased over most regions of China and Taiwan, as a result of the production of ammonium sulfate; increased concentrations of SO42-, however, were simulated over South Korea, Japan, and the southern region of Chengdu, caused by higher relative humidity (RH). In contrast, during the month of July, our simulations showed an increase in SO42- concentrations over most regions of China. To gain a more comprehensive understanding, we defined a sulfur conversion ratio ( [Formula: see text] ), which explains how changes in sulfur in the gas phase affect changes in sulfate concentrations. A subsequent sensitivity analysis performed in this study indicated the same relationship between changes in ammonia and its effect on inorganic fine particulate matter (PM2.5). This study highlights the challenge of controlling and managing inorganic PM2.5 and indicates that reducing the emissions of air pollutants do not necessarily lead to a reduction in their concentrations.


Subject(s)
Air Pollutants , Ammonia , Humans , Ammonia/analysis , Particulate Matter/analysis , Air Pollutants/analysis , Asia, Eastern , China , Sulfates/analysis , Sulfur , Environmental Monitoring/methods
3.
Geophys Res Lett ; 42(13): 5485-5492, 2015 07 16.
Article in English | MEDLINE | ID: mdl-26937058

ABSTRACT

Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.

4.
Atmosphere (Basel) ; 2(4): 633-654, 2011 Dec.
Article in English | MEDLINE | ID: mdl-33758673

ABSTRACT

We use the Tropospheric Emission Spectrometer (TES) aboard the NASA Aura satellite to determine the concentrations of the trace gases ammonia (NH3) and formic acid (HCOOH) within boreal biomass burning plumes, and present the first detection of peroxy acetyl nitrate (PAN) and ethylene (C2H4) by TES. We focus on two fresh Canadian plumes observed by TES in the summer of 2008 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS-B) campaign. We use TES retrievals of NH3 and HCOOH within the smoke plumes to calculate their emission ratios (1.0% ± 0.5% and 0.31% ± 0.21%, respectively) relative to CO for these Canadian fires. The TES derived emission ratios for these gases agree well with previous aircraft and satellite estimates, and can complement ground-based studies that have greater surface sensitivity. We find that TES observes PAN mixing ratios of ~2 ppb within these mid-tropospheric boreal biomass burning plumes when the average cloud optical depth is low (<0.1) and that TES can detect C2H4 mixing ratios of ~2 ppb in fresh biomass burning smoke plumes.

SELECTION OF CITATIONS
SEARCH DETAIL
...