Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 808, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30778057

ABSTRACT

Major hydrocarbon accumulations occur in traps associated with salt domes. Whereas some of these hydrocarbons remain to be extracted for economic use, significant amounts have degraded in the subsurface, yielding mineral precipitates as byproducts. Salt domes of the Gulf of Mexico Basin typically exhibit extensive deposits of carbonate that form as cap rock atop salt structures. Despite previous efforts to model cap rock formation, the details of subsurface reactions (including the role of microorganisms) remain largely unknown. Here we show that cap rock mineral precipitation occurred via closed-system sulfate reduction, as indicated by new sulfur isotope data. 13C-depleted carbonate carbon isotope compositions and low clumped isotope-derived carbonate formation temperatures indicate that microbial, sulfate-dependent, anaerobic oxidation of methane (AOM) contributed to carbonate formation. These findings suggest that AOM serves as an unrecognized methane sink that reduces methane emissions in salt dome settings perhaps associated with an extensive, deep subsurface biosphere.


Subject(s)
Carbonates/chemistry , Geologic Sediments/microbiology , Methane/metabolism , Anaerobiosis , Carbonates/metabolism , Gulf of Mexico , Louisiana , Oxidation-Reduction , Sulfates/chemistry , Sulfur , Sulfur Isotopes/analysis , Texas
SELECTION OF CITATIONS
SEARCH DETAIL
...