Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35215173

ABSTRACT

The role of uropathogenic Escherichia coli (UPEC) in colonization and infection of female patients with anatomical and functional abnormalities of the urinary system is elusive. In this study, the phenotype, genotype and the phylogeny of UPEC strains isolated from the urine of pediatric female patients with cystitis of normal and abnormal urinary tract were determined. Multiplex PCR results demonstrated that 86% of the strains isolated from female patients with normal urinary tract (NUT), belonged to the phylo-groups B2 and D. Their prevalence decreased to 23% in strains isolated from patients with abnormal urinary tract (AUT). More of the isolates from AUT patients produced a biofilm on polystyrene and polyvinyl chloride (PVC), adhered to epithelial cells, and encoded pap and sfa genes than strains isolated from female patients with NUT. In contrast, a higher number of hemolysin-producing strains with serogroups associated with UPEC were isolated from patients with NUT. In summary, the results suggest that cystitis in female patients with NUT is associated with ExPEC, whereas cystitis in female patients with AUT is associated with pathogenic intestinal E. coli strains that have acquired the ability to colonize the bladder.

2.
Microorganisms ; 10(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35056621

ABSTRACT

The secretion of α-hemolysin by uropathogenic Escherichia coli (UPEC) is commonly associated with the severity of urinary tract infections, which makes it a predictor of poor prognosis among patients. Accordingly, this toxin has become a target for diagnostic tests and therapeutic interventions. However, there are several obstacles associated with the process of α-hemolysin purification, therefore limiting its utilization in scientific investigations. In order to overcome the problems associated with α-hemolysin expression, after in silico prediction, a 20.48 kDa soluble α-hemolysin recombinant denoted rHlyA was constructed. This recombinant is composed by a 182 amino acid sequence localized in the aa542-723 region of the toxin molecule. The antigenic determinants of the rHlyA were estimated by bioinformatics analysis taking into consideration the tertiary form of the toxin, epitope analysis tools, and solubility inference. The results indicated that rHlyA has three antigenic domains localized in the aa555-565, aa600-610, and aa674-717 regions. Functional investigation of rHlyA demonstrated that it has hemolytic activity against sheep red cells, but no cytotoxic effect against epithelial bladder cells. In summary, the results obtained in this study indicate that rHlyA is a soluble recombinant protein that can be used as a tool in studies that aim to understand the mechanisms involved in the hemolytic and cytotoxic activities of α-hemolysin produced by UPEC. In addition, rHlyA can be applied to generate monoclonal and/or polyclonal antibodies that can be utilized in the development of diagnostic tests and therapeutic interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...