Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Microorganisms ; 11(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37894103

ABSTRACT

Secondary metabolites (SMs) from environmental bacteria offer viable solutions for various health and environmental challenges. Researchers are employing advanced bioinformatic tools to investigate less-explored microorganisms and unearth novel bioactive compounds. In this research area, our understanding of SMs from environmental Gram-negative bacteria lags behind that of its Gram-positive counterparts. In this regard, Pedobacter spp. have recently gained attention, not only for their role as plant growth promoters but also for their potential in producing antimicrobials. This study focuses on the genomic analysis of Pedobacter spp. to unveil the diversity of the SMs encoded in their genomes. Among the 41 genomes analyzed, a total of 233 biosynthetic gene clusters (BGCs) were identified, revealing the potential for the production of diverse SMs, including RiPPs (27%), terpenes (22%), hybrid SMs (17%), PKs (12%), NRPs (9%) and siderophores (6%). Overall, BGC distribution did not correlate with phylogenetic lineage and most of the BGCs showed no significant hits in the MIBiG database, emphasizing the uniqueness of the compounds that Pedobacter spp. can produce. Of all the species examined, P. cryoconitis and P. lusitanus stood out for having the highest number and diversity of BGCs. Focusing on their applicability and ecological functions, we investigated in greater detail the BGCs responsible for siderophore and terpenoid production in these species and their relatives. Our findings suggest that P. cryoconitis and P. lusitanus have the potential to produce novel mixtures of siderophores, involving bifunctional IucAC/AcD NIS synthetases, as well as carotenoids and squalene. This study highlights the biotechnological potential of Pedobacter spp. in medicine, agriculture and other industries, emphasizing the need for a continued exploration of its SMs and their applications.

2.
Front Psychol ; 14: 1176564, 2023.
Article in English | MEDLINE | ID: mdl-37213356

ABSTRACT

Background: Substance abuse has an impact on various cognitive domains, including memory. Even though this impact has been extensively examined across different subdomains, false memory has been sparsely studied. This systematic review and meta-analysis seek to synthesize the current scientific data concerning false memory formation in individuals with a history of substance abuse. Methods: PubMed, Scopus, the Cochrane Library, Web of Science, and PsycINFO were searched to identify all experimental and observational studies in English, Portuguese, and Spanish. Studies were then examined by four independent reviewers and, if they met the inclusion criteria, assessed for their quality. The Cochrane Risk of Bias Tool for randomized controlled trials (RCT) and the Joanna Briggs Institute (JBI) critical appraisal checklists for quasi-experimental and analytic cross-sectional studies were used to assess the risk of bias. Results: From the 443 screened studies, 27 (and two more from other sources) were considered eligible for full-text review. A final 18 studies were included in the present review. Of these, 10 were conducted with alcoholics or heavy drinkers, four focused on ecstasy/polydrug users, three were done with cannabis users and one focused on methadone maintenance patients with current cocaine dependence. Regarding false memory type, 15 studies focused on false recognition/recall, and three on provoked confabulation. Conclusions: None but one of the studies considering false recognition/recall of critical lures found any significant differences between individuals with a history of substance abuse and healthy controls. However, most of the studies taking into account false recognition/recall of related and unrelated events found that individuals with a history of substance abuse showed significantly higher rates of false memories than controls. Future research should continue to consider different types of false memories as well as their potential association with relevant clinical variables. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=266503, identifier: CRD42021266503.

3.
Acta Psychol (Amst) ; 235: 103898, 2023 May.
Article in English | MEDLINE | ID: mdl-37001396

ABSTRACT

As a chronic disease with consistent relapse rates, substance use disorders (SUD) require a continuity-of-care approach. Unfortunately, many patients do not have access to continuing care. This systematic review analysed the current scientific knowledge to better understand if app-based smartphone interventions can be an effective alternative. The databases Cochrane Library, PubMed, Web of Science, and PsycINFO were used to find experimental and quasi-experimental studies investigating the effectiveness of a smartphone intervention in individuals who had completed treatment for SUD. After removing duplicates, a total of 1488 studies were screened, with 48 being selected for a full-text review. Four studies met all the criteria, with one other being added by identification through other resources, making a total of 5 studies included in the present review. Out of the four studies using a control group, only one found no significant differences in favour of the experimental group. That study used an active control group and compared the smartphone intervention to its therapeutic group equivalent. There were no significant differences between the two experimental groups. Overall, the results indicate that app-based smartphone interventions can be an effective alternative to traditional forms of continuing care. However, literature is still scarce, and more research needs to be made on this subject. This systematic review is registered at PROSPERO with the identifier [CRD42021272070].


Subject(s)
Smartphone , Substance-Related Disorders , Humans , Substance-Related Disorders/therapy
4.
Appl Microbiol Biotechnol ; 107(5-6): 1687-1696, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36763118

ABSTRACT

The enzymatic machinery involved in the biosynthesis of lantibiotic is an untapped source of proteases with different specificities. Lanthipeptide biosynthesis requires proteolysis of specific target sequences by known proteases, which are encoded by contiguous genes. Herein, the activity of lichenicidin A2 (LicA2) trimming proteases (LicP and LicT) was investigated in vivo. Firstly, the impact of some residues and the size of the peptide were evaluated. Then followed trials in which LicA2 leader was evaluated as a tag to direct production and secretion of other relevant peptides. Our results show that a negatively charged residue (preferably Glu) at cleavage site is important for LicP efficacy. Some mutations of the lichenicidin hexapeptide such as Val-4Ala, Asp-5Ala, Asn-6Ser, and the alteration of GG-motif to GA resulted in higher processing rates, indicating the possibility of improved lichenicidin production in Escherichia coli. More importantly, insulin A, amylin (non-lanthipeptides), and epidermin were produced and secreted to E. coli supernatant, when fused to the LicA2 leader peptide. This work aids in clarifying the activity of lantibiotic-related transporters and proteases and to evaluate their possible application in industrial processes of relevant compounds, taking advantage of the potential of microorganisms as biofactories. KEY POINTS: • LicM2 correct activity implies a negatively charged residue at position -1. • Hexapeptide mutations can increase the amount of fully processed Bliß. • LicA2 leader peptide directs LicTP cleavage and secretion of other peptides.


Subject(s)
Bacteriocins , Peptide Hydrolases , Peptide Hydrolases/metabolism , Escherichia coli/genetics , Peptides , Protein Sorting Signals , Endopeptidases
5.
Biology (Basel) ; 12(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36829513

ABSTRACT

Research on secondary metabolites produced by Archaea such as ribosomally synthesized and post-translationally modified peptides (RiPPs) is limited. The genome of Haloferax mediterranei ATCC 33500 encodes lanthipeptide synthetases (medM1, medM2, and medM3) and a thiazole-forming cyclodehydratase (ycaO), possibly involved in the biosynthesis of lanthipeptides and the TOMMs haloazolisins, respectively. Lanthipeptides and TOMMs often have antimicrobial activity, and H. mediterranei has antagonistic activity towards haloarchaea shown to be independent of medM genes. This study investigated (i) the transcription of ycaO and medM genes, (ii) the involvement of YcaO in bioactivity, and (iii) the impact of YcaO and MedM-encoding genes' absence in the biomolecular profile of H. mediterranei. The assays were performed with biomass grown in agar and included RT-qPCR, the generation of knockout mutants, bioassays, and FTIR analysis. Results suggest that ycaO and medM genes are transcriptionally active, with the highest number of transcripts observed for medM2. The deletion of ycaO gene had no effect on H. mediterranei antihaloarchaea activity. FTIR analysis of medM and ycaO knockout mutants suggest that MedMs and YcaO activity might be directly or indirectly related t lipids, a novel perspective that deserves further investigation.

6.
Anal Bioanal Chem ; 415(13): 2613-2627, 2023 May.
Article in English | MEDLINE | ID: mdl-36631573

ABSTRACT

Microbial metabolomics allows understanding and to comprehensively analyse metabolites, and their related cellular and metabolic processes, that are produced and released to the extracellular environment under specific conditions. In that regard, the main objective of this research is to understand the impact of culture media changes in the metabolic profile of Pedobacter lusitanus NL19 (NL19) and Pedobacter himalayensis MTCC 6384 (MTCC6384) and respective influence on the production of biotechnologically relevant compounds. Solid-phase microextraction combined with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry with time-of-flight analyser (GC × GC-ToFMS) was applied to comprehensively study the metabolites produced by NL19 and MTCC6384 both in tryptic soy broth 100% (TSB100) and tryptic soy broth with 25% casein peptone (PC25). A total of 320 metabolites were putatively identified, which belong to different chemical families: alcohols, aldehydes, esters, ethers, hydrocarbons, ketones, nitrogen compounds, sulphur compounds, monoterpenes, and sesquiterpenes. Metabolites that were statistically different from the control (sterile medium) were selected allowing for the construction of the metabolic profile of both strains. A set of 80 metabolites was tentatively associated to the metabolic pathways such as the metabolism of fatty acids, branched-chain aminoacids, phenylalanine, methionine, aromatic compounds, and monoterpene and sesquiterpene biosynthesis. This study allowed to better understand how slight changes of the culture media and thus the composition of nutrients impair the metabolic profile of bacteria, which may be further explored for metabolomics pipeline construction or biotechnological applications.


Subject(s)
Aldehydes , Volatile Organic Compounds , Humans , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry , Monoterpenes , Culture Media , Volatile Organic Compounds/chemistry , Solid Phase Microextraction/methods
7.
RSC Adv ; 12(47): 30278-30286, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36337967

ABSTRACT

Haloarchaea microorganisms are little explored marine resources that can be a promising source of valuable compounds with unique characteristics, due to their adaptation to extreme environments. In this work, the extraction of bacterioruberin and proteins from Haloferax mediterranei ATCC 33500 was investigated using aqueous solutions of ionic liquids and surfactants, which were further compared with ethanol. Despite the good performance of ethanol in the extraction of bacterioruberin, the use of aqueous solutions of surface-active compounds allowed the simultaneous release of bacterioruberin and proteins in a multi-product process, with the non-ionic surfactants being identified as the most promising. The optimum operational conditions allowed a maximum extraction yield of 0.37 ± 0.01 mgbacterioruberin gwet biomass -1 and 352 ± 9 mgprotein gwet biomass -1 with an aqueous solution of Tween® 20 (at 182.4 mM) as the extraction solvent. In addition, high purities of bacterioruberin were obtained, after performing a simple induced precipitation using ethanol as an antisolvent to recover the proteins present in the initial extract. Finally, a step for polishing the bacterioruberin was performed, to enable solvent recycling, further closing the process to maximize its circularity.

8.
Animals (Basel) ; 12(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36230313

ABSTRACT

The WHO considers that antimicrobial resistance (AMR) is among the ten greatest global public health risks of the 21st century. The expansion of human populations and anthropogenically related activities, accompanied by the fragmentation of natural habitats, has resulted in increased human-wildlife interaction. Natural ecosystems are therefore subjected to anthropogenic inputs, which affect the resistome of wild animals. Thus, urgent multisectoral action is needed to achieve the Sustainable Development Goals following the One Health approach. The present work falls within the scope of this approach and aims to characterize the AMR of the faecal microbiome of the red fox (Vulpes vulpes), an opportunistic and generalist synanthropic species whose abundance has been increasing in urban and peri-urban areas. A high number of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were screened and quantified using a high-throughput qPCR approach, and the antimicrobial susceptibility of cultivable E. coli and Enterococcus spp. were assessed interpreted with both ECOFFs and clinical breakpoints. The most abundant ARGs detected confer resistance to trimethoprim and tetracyclines, although the first were absent in one of the locations studied. Several ARGs considered to be threats to human health were identified in high relative abundances (blaTEM, ermB, aadA, tetM, tetW, tetL, drfA1 and drfA17), especially in the geographical area with greater anthropogenic influence. Although at a low percentage, resistant and multidrug-resistant (MDR) E. coli and Enterococcus spp. were isolated, including one MDR E. coli showing resistance to 12 antimicrobials from 6 different classes.

9.
Chemosphere ; 309(Pt 1): 136644, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36181859

ABSTRACT

Antimicrobial resistance (AMR) is a global health concern. Nowadays, antibiotic resistance genes (ARGs) are considered emerging pollutants. This study followed the One Health framework, in which AMR surveillance in the environment, including in wild animals, is advisable to mitigate this problem. Here we investigated AMR associated with Eurasian otter, a semi-aquatic mammal considered an indicator of freshwater health. To do so, otter's faecal resistome was characterized by a high-throughput qPCR array. This technique has a high-capacity of ARGs profiling. Additionally, we have assessed the antimicrobial susceptibility of two indicator bacteria, E. coli and Enterococcus spp, isolated from otter spraints and interpreted the results according to clinical and epidemiological cut-offs (ECOFFs).


Subject(s)
Environmental Pollutants , Otters , Animals , Otters/microbiology , Sentinel Species , Escherichia coli , Anti-Bacterial Agents/pharmacology
10.
Gigascience ; 112022 08 11.
Article in English | MEDLINE | ID: mdl-35950839

ABSTRACT

BACKGROUND: Viruses are among the shortest yet highly abundant species that harbor minimal instructions to infect cells, adapt, multiply, and exist. However, with the current substantial availability of viral genome sequences, the scientific repertory lacks a complexity landscape that automatically enlights viral genomes' organization, relation, and fundamental characteristics. RESULTS: This work provides a comprehensive landscape of the viral genome's complexity (or quantity of information), identifying the most redundant and complex groups regarding their genome sequence while providing their distribution and characteristics at a large and local scale. Moreover, we identify and quantify inverted repeats abundance in viral genomes. For this purpose, we measure the sequence complexity of each available viral genome using data compression, demonstrating that adequate data compressors can efficiently quantify the complexity of viral genome sequences, including subsequences better represented by algorithmic sources (e.g., inverted repeats). Using a state-of-the-art genomic compressor on an extensive viral genomes database, we show that double-stranded DNA viruses are, on average, the most redundant viruses while single-stranded DNA viruses are the least. Contrarily, double-stranded RNA viruses show a lower redundancy relative to single-stranded RNA. Furthermore, we extend the ability of data compressors to quantify local complexity (or information content) in viral genomes using complexity profiles, unprecedently providing a direct complexity analysis of human herpesviruses. We also conceive a features-based classification methodology that can accurately distinguish viral genomes at different taxonomic levels without direct comparisons between sequences. This methodology combines data compression with simple measures such as GC-content percentage and sequence length, followed by machine learning classifiers. CONCLUSIONS: This article presents methodologies and findings that are highly relevant for understanding the patterns of similarity and singularity between viral groups, opening new frontiers for studying viral genomes' organization while depicting the complexity trends and classification components of these genomes at different taxonomic levels. The whole study is supported by an extensive website (https://asilab.github.io/canvas/) for comprehending the viral genome characterization using dynamic and interactive approaches.


Subject(s)
Genome, Viral , Viruses , Base Composition , Genomics/methods , Humans , Viruses/genetics
11.
Microbiol Resour Announc ; 11(6): e0015522, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35587780

ABSTRACT

Here, we report on the draft genome sequence of Vibrio mediterranei strain CyArs1, isolated from the marine sponge Cinachyrella sp. Genome annotation revealed multiple genomic features, including eukaryotic-like repeat protein- and multidrug resistance-encoding genes, potentially involved in symbiotic relationships with the sponge host.

12.
Sci Total Environ ; 825: 153831, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35151727

ABSTRACT

The emergence of antimicrobial resistance (AMR) is a global threat to public health. Antimicrobials are used in animal production and human medicine, which contribute to the circulation of antibiotic resistance genes (ARGs) in the environment. Wildlife can be reservoirs of pathogens and resistant bacteria. Furthermore, anthropogenic pressure can influence their resistome. This work aimed to study the AMR of the faecal microbiome of red deer, one of the most important game species in Europe. To this end, a high-throughput qPCR approach was employed to screen a high number of ARGs and the antimicrobial susceptibility of indicator bacteria was determined. Several genes that confer resistance to different classes of antibiotics were identified, with the most abundant being tetracycline ARGs. Other genes were also present that are considered current and future threats to human health, and some of these were relatively abundant. Multidrug-resistant E. coli and Enterococcus spp. were isolated, although the overall level of antibiotic resistance was low. These results highlight the pressing need to know the origin and transmission of AMR in wildlife. Thus, and considering the One Health concept, studies such as this one shows the need for surveillance programs to prevent the spread of drug-resistant strains and ARGs.


Subject(s)
Deer , Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Microbial/genetics , Escherichia coli/genetics , Feces , Genes, Bacterial
13.
World J Microbiol Biotechnol ; 38(1): 18, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34977979

ABSTRACT

Lantibiotics are a promising class of natural antimicrobial peptides. Lichenicidin is a two-peptide lantibiotic in which two mature peptides act synergistically to exhibit full bioactivity. Considering the two-peptide lantibiotics described so far, only cytolysin has been deeply characterized in terms of toxicity towards eukaryotic cells and it was found to be hemolytic and cytotoxic. This work aimed to improve the production of lichenicidin in vivo and characterize its antibacterial activity and toxicity against human cells. Peptides were purified and minimal inhibitory concentration (MIC) was determined against several strains; a time-kill assay was performed with Staphylococcus aureus. The hemolytic effect of lichenicidin was evaluated on blood samples from healthy donors and its toxicity towards human fibroblasts. The quantity of purified peptides was 1 mg/l Bliα and 0.4 mg/l Bliß. MIC for methicillin-sensitive and resistant S. aureus (MSSA and MRSA) strains were 16-32 µg/ml and 64-128 µg/ml, respectively. At the MIC, lichenicidin took less than 3 h to eliminate MSSA, indicating a strong bactericidal effect. It induces cell lysis at the highest concentration, an effect that might be potentiated by Bliß. Lichenicidin was not cytotoxic to human erythrocytes and fibroblasts. In this work, we evaluated the therapeutic potential of lichenicidin as a possible antimicrobial alternative.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Peptides/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacteriocins/pharmacology , Fibroblasts/drug effects , Peptides/pharmacology , Amino Acid Sequence , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antimicrobial Peptides/isolation & purification , Bacteriocins/chemistry , Bacteriocins/isolation & purification , Cell Line , Dose-Response Relationship, Drug , Drug Synergism , Hemolysis , Humans , Microbial Sensitivity Tests
14.
Transbound Emerg Dis ; 69(5): e3425-e3429, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34981906

ABSTRACT

In the last decades, the wildlife-human interface has been increasing due to several anthropogenic factors. Therefore, it is crucial to be aware of the impact of these new dynamics on the health of wild animals and their associated zoonotic disease risks. This study aimed to characterize the faecal microbiota of two populations of red deer (Cervus elaphus) by metabarcoding, with a particular focus on potential human and veterinary pathogens, and to perform an assessment of antibiotic resistance genes (ARGs) occurrence. The faecal microbiota of red deer was assessed by metabarcoding using the 16S rRNA marker, and OTUs of the genera Treponema, Yersinia, Clostridium, Mycobacterium, and Rickettsia were identified. Two of them affiliated with species more commonly regarded as pathogens (Clostridium piliforme and Yersinia enterocolitica). The quantification of ARGs was performed by quantitative real-time PCR, using a metagenomic approach, and the most abundant genes were found to be blaTEM , sul1, tetracycline resistance genes (tetW, tetO, and tetQ) and ermF. From these, tetO and tetW are rank II ARGs, which were recently considered future threats for human health. Our results suggest the need for screening programs for the occurrence of pathogens and ARGs in wildlife and particularly in-game species.


Subject(s)
Deer , Genes, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , DNA , Drug Resistance, Microbial/genetics , Humans , RNA, Ribosomal, 16S/genetics
15.
Colloids Surf B Biointerfaces ; 211: 112308, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34973602

ABSTRACT

Lantibiotics are promising candidates to address the worldwide problem of antibiotic resistance. They belong to a class of natural compounds exhibiting strong activity against clinically relevant Gram-positive bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Lichenicidin is a class II two-peptide lantibiotic. The presence of the two mature peptides, Bliα and Bliß, is necessary for full activity against target bacteria. This work aims at clarifying the synergistic activity of both peptides in their interaction with the target membranes. The effect of lichenicidin was tested against S. aureus cells and large unilamellar vesicles. Lichenicidin increases the net surface charge of S. aureus, as shown by zeta-potential measurements, without reaching electroneutralization. In addition, lichenicidin causes cell surface perturbations that culminate in the leakage of its internal contents, as observed by atomic force microscopy. Bliα seems to have low affinity for S. aureus, however, it contributes to increase the affinity of Bliß, because together they present higher affinity than separately. In contrast, Bliα seems to provide an anchoring site for lichenicidin in lipid II-containing membranes. Interestingly, Bliß alone can induce high levels of membrane leakage, but this effect appears to be faster in the presence of Bliα. Based on this information, we propose a mechanism of action of lichenicidin.


Subject(s)
Bacteriocins , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Bacteriocins/chemistry , Microbial Sensitivity Tests , Peptides/pharmacology , Staphylococcus aureus/metabolism
16.
Microb Ecol ; 83(2): 470-481, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33987687

ABSTRACT

Research on secondary metabolites (SMs) has been mostly focused on Gram-positive bacteria, especially Actinobacteria. The association of genomics with robust bioinformatics tools revealed the neglected potential of Gram-negative bacteria as promising sources of new SMs. The family Sphingobacteriaceae belongs to the phylum Bacteroidetes having representatives in practically all environments including humans, rhizosphere, soils, wastewaters, among others. Some genera of this family have demonstrated great potential as plant growth promoters, bioremediators and producers of some value-added compounds such as carotenoids and antimicrobials. However, to date, Sphingobacteriaceae's SMs are still poorly characterized, and likewise, little is known about their chemistry. This study revealed that Sphingobacteriaceae pangenome encodes a total of 446 biosynthetic gene clusters (BGCs), which are distributed across 85 strains, highlighting the great potential of this bacterial family to produce SMs. Pedobacter, Mucilaginibacter and Sphingobacterium were the genera with the highest number of BGCs, especially those encoding the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), terpenes, polyketides and nonribosomal peptides (NRPs). In Mucilaginibacter and Sphingobacterium genera, M. lappiensis ATCC BAA-1855, Mucilaginibacter sp. OK098 (both with 11 BGCs) and Sphingobacterium sp. 21 (6 BGCs) are the strains with the highest number of BGCs. Most of the BGCs found in these two genera did not have significant hits with the MIBiG database. These results strongly suggest that the bioactivities and environmental functions of these compounds, especially RiPPs, PKs and NRPs, are still unknown. Among RiPPs, two genera encoded the production of class I and class III lanthipeptides. The last are associated with LanKC proteins bearing uncommon lyase domains, whose dehydration mechanism deserves further investigation. This study translated genomics into functional information that unveils the enormous potential of environmental Gram-negative bacteria to produce metabolites with unknown chemistries, bioactivities and, more importantly, unknown ecological roles.


Subject(s)
Actinobacteria , Bacteroidetes , Actinobacteria/genetics , Bacteroidetes/genetics , Computational Biology , Genomics/methods , Humans , Multigene Family
17.
Environ Pollut ; 292(Pt B): 118406, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34710519

ABSTRACT

Antimicrobial resistance (AMR) is a serious problem for public and animal health, and also for the environment. Monitoring and reporting the occurrence of AMR determinants and bacteria with the potential to disseminate is a priority for health surveillance programs around the world and critical to the One Health concept. Wildlife is a reservoir of AMR, and human activities can strongly influence their resistome. The main goal of this work was to study the resistome of wild boar faecal microbiome, one of the most important game species in Europe using metagenomic and culturing approaches. The most abundant genes identified by the high-throughput qPCR array encode mobile genetic elements, including integrons, which can promote the dissemination of AMR determinants. A diverse set of genes (n = 62) conferring resistance to several classes of antibiotics (ARGs), some of them included in the WHO list of critically important antimicrobials were also detected. The most abundant ARGs confer resistance to tetracyclines and aminoglycosides. The phenotypic resistance of E. coli and Enterococcus spp. were also investigated, and together supported the metagenomic results. As the wild boar is an omnivorous animal, it can be a disseminator of AMR bacteria and ARGs to livestock, humans, and the environment. This study supports that wild boar can be a key sentinel species in ecosystems surveillance and should be included in National Action Plans to fight AMR, adopting a One Health approach.


Subject(s)
Microbiota , Sus scrofa , Animals , Anti-Bacterial Agents , Escherichia coli , Feces , Genes, Bacterial , Humans , Swine
18.
Sci Total Environ ; 812: 152324, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34915011

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) is one of the most frequent bacterial agents associated with food-borne outbreaks in Europe. In humans, the infection can lead to life-threatening diseases. Domestic and wild animals can harbor STEC, and ruminants are the main STEC reservoirs, although asymptomatic. In the present study we have characterized STEC from wildlife (wild boar (n = 56), red deer (n = 101), red fox (n = 37) and otter (n = 92)). Cultivable STEC (n = 52) were isolated from 17% (n = 49) of the faecal samples. All the isolates were non-O157 STEC encoding stx1 (n = 2; 4%) and/or stx2 genes (n = 51; 98%). Only one strain (2%) isolated from red fox had an antibiotic resistant phenotype. However, when the normalized resistance interpretation of epidemiological cutoffs (NRI ECOFFs) were used, 23% (n = 12) of the strains were non-wildtype to at least one of the antibiotics tested. After analysis by pulsed-field gel electrophoresis (PFGE), 20 strains were selected for whole genome sequencing and belonged to the following serotypes: O27:H30 (n = 15), O146:H28 (n = 2), O146:H21 (n = 1), O178:H19 (n = 1), and O103:H2 (n = 1). In addition to stx, all strains encode several virulence factors such as toxins, adhesins, fimbriae and secretion systems, among others. All sequenced genomes carried several mobile genetic elements (MGEs), such as prophages and/or plasmids. The core genome and the phylogenetic analysis showed close evolutionary relationships between some of the STEC recovered from wildlife and strains of clinical origin, highlighting their pathogenic potential. Overall, our results show the zoonotic potential of STEC strains originating from wildlife, highlighting the importance of monitoring their genomic characteristics following a One Health perspective, in which the health of humans is related to the health of animals, and the environment.


Subject(s)
Deer , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Animals , Animals, Wild , Escherichia coli Proteins/genetics , Phylogeny , Shiga-Toxigenic Escherichia coli/genetics , Virulence
19.
Res Microbiol ; 173(3): 103919, 2022.
Article in English | MEDLINE | ID: mdl-34942349

ABSTRACT

Haloarchaea are mostly components of the microbial biomass of saline aquatic environments, where they can be a dietary source of heterotrophic metazoans or contribute to flamingo's plumage coloration. The diversity of secondary metabolites (SMs) produced by haloarchaea, which might play multiple ecological roles and have diverse biotechnological applications has been largely understudied. Herein, 67 haloarchaeal complete genomes were analyzed and 182 SMs biosynthetic gene clusters (BGCs) identified that encode the production of terpenes (including carotenoids), RiPPs and siderophores. Terpene BGCs were further analysed and it was concluded that all haloarchaea might produce squalene and bacterioruberin, which one a strong antioxidant. Most of them have other carotenoid BGCs that include a putative ß-carotene ketolase that was not characterized so far in haloarchaea, but may be involved with canthaxanthin's biosynthesis. The production of bacterioruberin by Haloferax mediterranei ATCC 33500 was found to be not related to its antimicrobial activity.


Subject(s)
Biotechnology , Carotenoids , Antioxidants , Biomass , Genomics
20.
Behav Sci (Basel) ; 11(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34677226

ABSTRACT

OBJECTIVES: This systematic review aimed to understand the current state of the art about the effectiveness of mindfulness-based relapse prevention (MBRP) on individuals with substance use disorders (SUD), taking into account not only SUD variables (e.g., cravings, frequency of use) but also other relevant clinical variables (e.g., anxiety and depressive symptoms, quality of life). METHODS: A comprehensive search of electronic databases was conducted to identify studies that investigate MBRP interventions on individuals with SUD. Studies that met the inclusion criteria were synthesized and assessed using systematic review methods. RESULTS: Thirteen studies were included in the present review. The methodological quality of the included studies was moderately strong. Nine studies (69.2%) used the traditional 16 h MBRP program. Six studies (46.1%) chose to use a co-intervention treatment ranging from the treatment as usual (TAU) to cognitive behavioral therapy. All but one study indicated that their interventions produced positive effects on at least one addiction outcome measure. None of the interventions were evaluated across different settings or populations. CONCLUSIONS: Despite some heterogeneity regarding the type of MBRP program used, results support the effectiveness of these interventions in the SUD population, especially in reducing cravings, decreasing the frequency of use, and improving depressive symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...