Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 134(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557486

ABSTRACT

The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.


Subject(s)
Dystonia , Dystonic Disorders , Humans , Signal Transduction , Brain , Neurotransmitter Agents
2.
Data Brief ; 39: 107609, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34901342

ABSTRACT

Here, we present quantitative subcellular compartment-specific proteomic data from wildtype and DYT-TOR1A heterozygous mouse embryonic fibroblasts (MEFs) basally and following thapsigargin (Tg) treatment [1]. In this experiment, we generated MEFs from wild type (WT) and a heterozygous DYT-TOR1A mouse model of dystonia. Subsequently, these MEF cultures were treated with either 1 µM Tg or dimethylsulfoxide vehicle (Veh) for six hours. Following treatment, the cells were fractionated into nuclear and cytosolic fractions. Liquid chromatography, tandem mass spectrometry (LC/MS/MS)-based proteomic profiling identified 65,056 unique peptides and 4801 unique proteins across all samples. The data presented here provide subcellular compartment-specific proteomic information within a dystonia model system both basally and under cellular stress. These data can inform future experiments focused on studying the function of TorsinA, the protein encoded by TOR1A, and its potential role in nucleocytoplasmic transport and proteostasis. In addition, the information in this article can also inform future mechanistic studies investigating the relationship between DYT-TOR1A dystonia and the cellular stress response to advance understanding of the pathogenesis of dystonia.

3.
Neurobiol Dis ; 158: 105464, 2021 10.
Article in English | MEDLINE | ID: mdl-34358617

ABSTRACT

TorsinA is a AAA+ ATPase that shuttles between the ER lumen and outer nuclear envelope in an ATP-dependent manner and is functionally implicated in nucleocytoplasmic transport. We hypothesized that the DYT-TOR1A dystonia disease-causing variant, ΔE TorsinA, may therefore disrupt the normal subcellular distribution of proteins between the nuclear and cytosolic compartments. To test this hypothesis, we performed proteomic analysis on nuclear and cytosolic subcellular fractions from DYT-TOR1A and wildtype mouse embryonic fibroblasts (MEFs). We further examined the compartmental proteomes following exposure to thapsigargin (Tg), an endoplasmic reticulum (ER) stressor, because DYT-TOR1A dystonia models have previously shown abnormalities in cellular stress responses. Across both subcellular compartments, proteomes of DYT-TOR1A cells showed basal state disruptions consistent with an activated stress response, and in response to thapsigargin, a blunted stress response. However, the DYT-TOR1A nuclear proteome under Tg cell stress showed the most pronounced and disproportionate degree of protein disruptions - 3-fold greater than all other conditions. The affected proteins extended beyond those typically associated with stress responses, including enrichments for processes critical for neuronal synaptic function. These findings highlight the advantage of subcellular proteomics to reveal events that localize to discrete subcellular compartments and refine thinking about the mechanisms and significance of cell stress in DYT-TOR1A pathogenesis.


Subject(s)
Cell Nucleus/pathology , Dystonia/genetics , Dystonia/pathology , Molecular Chaperones/genetics , Proteomics , Stress, Physiological , Animals , Cytosol/metabolism , Endoplasmic Reticulum Stress/drug effects , Gene Knock-In Techniques , Mice , Mice, Inbred C57BL , Subcellular Fractions , Thapsigargin/pharmacology
4.
Sci Transl Med ; 13(607)2021 08 18.
Article in English | MEDLINE | ID: mdl-34408078

ABSTRACT

Dystonias are a group of chronic movement-disabling disorders for which highly effective oral medications or disease-modifying therapies are lacking. The most effective treatments require invasive procedures such as deep brain stimulation. In this study, we used a high-throughput assay based on a monogenic form of dystonia, DYT1 (DYT-TOR1A), to screen a library of compounds approved for use in humans, the NCATS Pharmaceutical Collection (NPC; 2816 compounds), and identify drugs able to correct mislocalization of the disease-causing protein variant, ∆E302/3 hTorsinA. The HIV protease inhibitor, ritonavir, was among 18 compounds found to normalize hTorsinA mislocalization. Using a DYT1 knock-in mouse model to test efficacy on brain pathologies, we found that ritonavir restored multiple brain abnormalities across development. Ritonavir acutely corrected striatal cholinergic interneuron physiology in the mature brain and yielded sustained correction of diffusion tensor magnetic resonance imaging signals when delivered during a discrete early developmental window. Mechanistically, we found that, across the family of HIV protease inhibitors, efficacy correlated with integrated stress response activation. These preclinical results identify ritonavir as a drug candidate for dystonia with disease-modifying potential.


Subject(s)
Dystonia , HIV Protease Inhibitors , Animals , Brain/diagnostic imaging , Dystonia/drug therapy , Mice , Molecular Chaperones , Phenotype , Ritonavir
5.
Science ; 372(6540)2021 04 23.
Article in English | MEDLINE | ID: mdl-33888613

ABSTRACT

The integrated stress response (ISR) maintains proteostasis by modulating protein synthesis and is important in synaptic plasticity, learning, and memory. We developed a reporter, SPOTlight, for brainwide imaging of ISR state with cellular resolution. Unexpectedly, we found a class of neurons in mouse brain, striatal cholinergic interneurons (CINs), in which the ISR was activated at steady state. Genetic and pharmacological manipulations revealed that ISR signaling was necessary in CINs for normal type 2 dopamine receptor (D2R) modulation. Inhibiting the ISR inverted the sign of D2R modulation of CIN firing and evoked dopamine release and altered skill learning. Thus, a noncanonical, steady-state mode of ISR activation is found in CINs, revealing a neuromodulatory role for the ISR in learning.


Subject(s)
Cholinergic Neurons/metabolism , Dopamine/metabolism , Interneurons/physiology , Learning/physiology , Stress, Physiological , Action Potentials , Animals , Corpus Striatum/cytology , Corpus Striatum/physiology , Female , Male , Mice , Mice, Inbred C57BL , Motor Skills , Neuronal Plasticity , Patch-Clamp Techniques , Protein Biosynthesis , Receptors, Dopamine D2/metabolism
6.
Neuron ; 92(6): 1238-1251, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27939583

ABSTRACT

Dystonia is a brain disorder causing involuntary, often painful movements. Apart from a role for dopamine deficiency in some forms, the cellular mechanisms underlying most dystonias are currently unknown. Here, we discover a role for deficient eIF2α signaling in DYT1 dystonia, a rare inherited generalized form, through a genome-wide RNAi screen. Subsequent experiments including patient-derived cells and a mouse model support both a pathogenic role and therapeutic potential for eIF2α pathway perturbations. We further find genetic and functional evidence supporting similar pathway impairment in patients with sporadic cervical dystonia, due to rare coding variation in the eIF2α effector ATF4. Considering also that another dystonia, DYT16, involves a gene upstream of the eIF2α pathway, these results mechanistically link multiple forms of dystonia and put forth a new overall cellular mechanism for dystonia pathogenesis, impairment of eIF2α signaling, a pathway known for its roles in cellular stress responses and synaptic plasticity.


Subject(s)
Dystonia/genetics , Dystonic Disorders/genetics , Eukaryotic Initiation Factor-2/metabolism , Activating Transcription Factor 4/genetics , Animals , Disease Models, Animal , Dystonia/metabolism , Dystonia Musculorum Deformans/genetics , Dystonic Disorders/metabolism , Genomics , HEK293 Cells , Humans , Mice , Molecular Chaperones/genetics , Neuronal Plasticity , Signal Transduction , Torticollis/genetics
7.
Neurobiol Dis ; 93: 137-45, 2016 09.
Article in English | MEDLINE | ID: mdl-27168150

ABSTRACT

Rare de novo mutations in genes associated with inherited Mendelian disorders are potential contributors to sporadic disease. DYT1 dystonia is an autosomal dominant, early-onset, generalized dystonia associated with an in-frame, trinucleotide deletion (n. delGAG, p. ΔE 302/303) in the Tor1a gene. Here we examine the significance of a rare missense variant in the Tor1a gene (c. 613T>A, p. F205I), previously identified in a patient with sporadic late-onset focal dystonia, by modeling it in mice. Homozygous F205I mice have motor impairment, reduced steady-state levels of TorsinA, altered corticostriatal synaptic plasticity, and prominent brain imaging abnormalities in areas associated with motor function. Thus, the F205I variant causes abnormalities in domains affected in people and/or mouse models with the DYT1 Tor1a mutation (ΔE). Our findings establish the pathological significance of the F205I Tor1a variant and provide a model with both etiological and phenotypic relevance to further investigate dystonia mechanisms.


Subject(s)
Dystonic Disorders/genetics , Molecular Chaperones/genetics , Mutation/genetics , Neuronal Plasticity/genetics , Animals , Disease Models, Animal , Dystonia/genetics , Mice, Transgenic
8.
Biol Psychiatry ; 75(8): 623-30, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-23414593

ABSTRACT

BACKGROUND: Synapse-associated protein 90/postsynaptic density protein 95-associated protein 3 (SAPAP3) is an excitatory postsynaptic protein implicated in the pathogenesis of obsessive-compulsive behaviors. In mice, genetic deletion of Sapap3 causes obsessive-compulsive disorder (OCD)-like behaviors that are rescued by striatal expression of Sapap3, demonstrating the importance of striatal neurotransmission for the OCD-like behaviors. In the striatum, there are two main excitatory synaptic circuits, corticostriatal and thalamostriatal. Neurotransmission defects in either or both of these circuits could potentially contribute to the OCD-like behaviors of Sapap3 knockout (KO) mice. Previously, we reported that Sapap3 deletion reduces corticostriatal alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid-type glutamate receptor-mediated synaptic transmission. METHODS: Whole-cell electrophysiological recording techniques in acute brain slices were used to measure synaptic transmission in the corticostriatal and thalamostriatal circuits of Sapap3 KO mice and littermate control animals. Transgenic fluorescent reporters identified striatopallidal and striatonigral projection neurons. SAPAP isoforms at corticostriatal and thalamostriatal synapses were detected using immunostaining techniques. RESULTS: In contrast to corticostriatal synapses, thalamostriatal synaptic activity is unaffected by Sapap3 deletion. At the molecular level, we find that another SAPAP family member, SAPAP4, is present at thalamostriatal, but not corticostriatal, synapses. This finding provides a molecular rationale for the functional divergence we observe between thalamic and cortical striatal circuits in Sapap3 KO mice. CONCLUSIONS: These findings define the circuit-level neurotransmission defects in a genetic mouse model for OCD-related behaviors, focusing attention on the corticostriatal circuit for mediating the behavioral abnormalities. Our results also provide the first evidence that SAPAP isoforms may be localized to synapses according to circuit-selective principles.


Subject(s)
Corpus Striatum/physiopathology , Nerve Tissue Proteins/metabolism , Neurons/physiology , Obsessive-Compulsive Disorder/physiopathology , Synapses/physiology , Animals , Cerebral Cortex/physiopathology , Disease Models, Animal , Excitatory Postsynaptic Potentials , In Vitro Techniques , Mice , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neural Pathways/physiopathology , Patch-Clamp Techniques , Receptors, AMPA/metabolism , Thalamus/physiopathology , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...