Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 107(19): 8599-604, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20445106

ABSTRACT

Structural features of neurons create challenges for effective production and distribution of essential metabolic energy. We investigated how metabolic energy is distributed between cellular compartments in photoreceptors. In avascular retinas, aerobic production of energy occurs only in mitochondria that are located centrally within the photoreceptor. Our findings indicate that metabolic energy flows from these central mitochondria as phosphocreatine toward the photoreceptor's synaptic terminal in darkness. In light, it flows in the opposite direction as ATP toward the outer segment. Consistent with this model, inhibition of creatine kinase in avascular retinas blocks synaptic transmission without influencing outer segment activity. Our findings also reveal how vascularization of neuronal tissue can influence the strategies neurons use for energy management. In vascularized retinas, mitochondria in the synaptic terminals of photoreceptors make neurotransmission less dependent on creatine kinase. Thus, vasculature of the tissue and the intracellular distribution of mitochondria can play key roles in setting the strategy for energy distribution in neurons.


Subject(s)
Darkness , Energy Metabolism/physiology , Retina/physiology , Animals , Creatine Kinase/antagonists & inhibitors , Creatine Kinase/metabolism , Dinitrofluorobenzene/pharmacology , Electroretinography , Energy Metabolism/drug effects , Energy Metabolism/radiation effects , Glutamates/metabolism , Mice , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/radiation effects , Models, Biological , Presynaptic Terminals/drug effects , Presynaptic Terminals/enzymology , Presynaptic Terminals/radiation effects , Protein Kinase Inhibitors/pharmacology , Retina/drug effects , Retina/enzymology , Retina/radiation effects , Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/drug effects , Retinal Cone Photoreceptor Cells/enzymology , Retinal Cone Photoreceptor Cells/radiation effects , Retinal Photoreceptor Cell Outer Segment/drug effects , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Photoreceptor Cell Outer Segment/radiation effects , Retinal Vessels/drug effects , Retinal Vessels/enzymology , Retinal Vessels/radiation effects , Synaptic Transmission/drug effects , Synaptic Transmission/radiation effects , Urodela/physiology
2.
Eur J Neurosci ; 19(11): 2923-30, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15182299

ABSTRACT

Macroarray analysis was used to compare equal amounts of cDNA from wild-type and rd/rd (retinal degeneration) mice, collected at P90 when photoreceptor degeneration is virtually complete. A stronger signal for the glycolytic enzyme phosphoglucose isomerase (Gpi1) was observed in the rd/rd sample. Extracellularly, Gpi1 may act as a cytokine, independently described as neuroleukin and autocrine motility factor. Retinal Gpi1 expression was investigated by Northern and Western blot analysis and immunohistochemistry. Double-labelling was performed with antibodies against Gpi1 and calbindin-D, glutamine synthetase, RPE65, calretinin and ultraviolet opsin in order to provide positive cell type identification. Northern and Western blots showed double expression levels per microgram of RNA and protein, respectively, in the rd/rd retina compared with wild-type. However, the total amount of Gpi1 protein per retina was indistinguishable. Gpi1 immunoreactivity was found in ganglion, amacrine, horizontal and bipolar cells, but not in rods, cones, pigment epithelium and Muller cells. This distribution explains why the absolute amounts of Gpi1 protein were not appreciably different between wild-type and the rd/rd phenotype, where rods and cones are absent, whilst the relative contribution of Gpi1 to the total protein and RNA pools differed. Some extracellular immunoreactivity was observed in the photoreceptor matrix around cones in freshly fixed tissue only, which could possibly reflect a role as a cytokine. We propose that glycolysis in Gpi1-negative cells proceeds entirely through the pentose phosphate pathway, creating NADPH at the cost of organic carbon. We hypothesize that the unique metabolic needs of photoreceptors justify this trade-off.


Subject(s)
Glucose-6-Phosphate Isomerase/metabolism , Neuroglia/enzymology , Photoreceptor Cells/enzymology , Pigment Epithelium of Eye/enzymology , Retinal Degeneration/enzymology , Retinal Degeneration/genetics , Animals , Blotting, Northern/methods , Blotting, Western/methods , Calbindin 2 , Calbindins , Carrier Proteins , Eye Proteins , Glutamate-Ammonia Ligase/metabolism , Humans , Immunohistochemistry/methods , Mice , Mice, Inbred Strains , Mice, Mutant Strains , Neurons/enzymology , Oligonucleotide Array Sequence Analysis/methods , Proteins/metabolism , RNA/genetics , RNA/metabolism , Rats , Rats, Sprague-Dawley , Retinal Degeneration/pathology , Rod Opsins/metabolism , S100 Calcium Binding Protein G/metabolism , cis-trans-Isomerases
SELECTION OF CITATIONS
SEARCH DETAIL
...