Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L141-L153, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36511516

ABSTRACT

Obesity is associated with severe, difficult-to-control asthma, and increased airway oxidative stress. Mitochondrial reactive oxygen species (mROS) are an important source of oxidative stress in asthma, leading us to hypothesize that targeting mROS in obese allergic asthma might be an effective treatment. Using a mouse model of house dust mite (HDM)-induced allergic airway disease in mice fed a low- (LFD) or high-fat diet (HFD), and the mitochondrial antioxidant MitoQuinone (MitoQ), we investigated the effects of obesity and ROS on HDM-induced airway inflammation, remodeling, and airway hyperresponsiveness (AHR). Obese allergic mice showed increased lung tissue eotaxin, airway tissue eosinophilia, and AHR compared with lean allergic mice. MitoQ reduced airway inflammation, remodeling, and hyperreactivity in both lean and obese allergic mice, and tissue eosinophilia in obese-allergic mice. Similar effects were observed with decyl triphosphonium (dTPP+), the hydrophobic cationic moiety of MitoQ lacking ubiquinone. HDM-induced oxidative sulfenylation of proteins was increased particularly in HFD mice. Although only MitoQ reduced sulfenylation of proteins involved in protein folding in the endoplasmic reticulum (ER), ER stress was attenuated by both MitoQ and dTPP+ suggesting the anti-allergic effects of MitoQ are mediated in part by effects of its hydrophobic dTPP+ moiety reducing ER stress. In summary, oxidative signaling is an important mediator of allergic airway disease. MitoQ, likely through reducing protein oxidation and affecting the UPR pathway, might be effective for the treatment of asthma and specific features of obese asthma.


Subject(s)
Asthma , Eosinophilia , Animals , Asthma/metabolism , Lung/metabolism , Obesity/metabolism , Inflammation/pathology , Pyroglyphidae , Eosinophilia/pathology , Disease Models, Animal
2.
Respir Med ; 185: 106506, 2021.
Article in English | MEDLINE | ID: mdl-34166960

ABSTRACT

BACKGROUND: The purpose of this study was to investigate how 8-isoprostanes, used as a marker of airway oxidative stress, were related to sinus disease and asthma. METHODS: We analyzed samples and data from two separate studies, one investigating sinonasal disease in asthma, the other investigating the effect of BMI on airway disease. We measured airway (nasal lavage) 8-isoprostanes and investigated the relationship with measures of sinus and asthma symptoms, asthma control and lung function. RESULTS: The study of people with sinonasal disease and poorly controlled asthma included 48 obese, 31 overweight and 23 lean participants. In multivariate analysis, nasal lavage 8-isoprostane levels increased with increasing BMI (p < 0.01), and were higher in Caucasian than African American participants (p = 0.01). Sinus symptoms were inversely related to nasal 8-isoprostanes (p = 0.02) independent of BMI and Race. In the study investigating the effect of BMI on airway disease, we enrolled 13 controls with obesity and 21 people with obesity and asthma: 8-isoprostane levels were higher in obese controls than in obese people with asthma (p < 0.01), and levels were inversely related to sinus symptoms (p = 0.02) and asthma control (p < 0.01). INTERPRETATION: 8-isoprostanes in nasal lavage are increased in obesity, and increased in Caucasians compared with African Americans. However, levels are higher in obese controls than obese people with asthma, and appear inversely related to symptoms of airway disease. CLINICAL IMPLICATION: Airway 8-isoprostanes likely reflect complex oxidative signaling pathways, which are altered in obesity and those of different race, rather than being a simple marker of airway oxidative injury. CAPSULE SUMMARY: Increased airway oxidative signaling (8-isoprostanes), may reflect normal physiology in the setting of obesity, as decreased levels are associated with disease activity in people with chronic sinonasal disease and asthma.


Subject(s)
Asthma/diagnosis , Dinoprost/analogs & derivatives , Nasal Lavage Fluid/chemistry , Oxidative Stress , Paranasal Sinus Diseases/diagnosis , Adult , Asthma/etiology , Biomarkers/analysis , Body Mass Index , Dinoprost/analysis , Female , Humans , Male , Middle Aged , Obesity/metabolism , Paranasal Sinus Diseases/etiology , Racial Groups , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...