Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3982, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729945

ABSTRACT

The hepatocytes within the liver present an immense capacity to adapt to changes in nutrient availability. Here, by using high resolution volume electron microscopy, we map how hepatic subcellular spatial organization is regulated during nutritional fluctuations and as a function of liver zonation. We identify that fasting leads to remodeling of endoplasmic reticulum (ER) architecture in hepatocytes, characterized by the induction of single rough ER sheet around the mitochondria, which becomes larger and flatter. These alterations are enriched in periportal and mid-lobular hepatocytes but not in pericentral hepatocytes. Gain- and loss-of-function in vivo models demonstrate that the Ribosome receptor binding protein1 (RRBP1) is required to enable fasting-induced ER sheet-mitochondria interactions and to regulate hepatic fatty acid oxidation. Endogenous RRBP1 is enriched around periportal and mid-lobular regions of the liver. In obesity, ER-mitochondria interactions are distinct and fasting fails to induce rough ER sheet-mitochondrion interactions. These findings illustrate the importance of a regulated molecular architecture for hepatocyte metabolic flexibility.


Subject(s)
Endoplasmic Reticulum , Fasting , Hepatocytes , Liver , Obesity , Fasting/metabolism , Endoplasmic Reticulum/metabolism , Animals , Hepatocytes/metabolism , Obesity/metabolism , Obesity/pathology , Liver/metabolism , Mice , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria, Liver/metabolism , Mitochondria, Liver/ultrastructure , Fatty Acids/metabolism , Humans , Oxidation-Reduction , Ribosomal Proteins/metabolism
2.
Nature ; 603(7902): 736-742, 2022 03.
Article in English | MEDLINE | ID: mdl-35264794

ABSTRACT

Cells display complex intracellular organization by compartmentalization of metabolic processes into organelles, yet the resolution of these structures in the native tissue context and their functional consequences are not well understood. Here we resolved the three-dimensional structural organization of organelles in large (more than 2.8 × 105 µm3) volumes of intact liver tissue (15 partial or full hepatocytes per condition) at high resolution (8 nm isotropic pixel size) using enhanced focused ion beam scanning electron microscopy1,2 imaging followed by deep-learning-based automated image segmentation and 3D reconstruction. We also performed a comparative analysis of subcellular structures in liver tissue of lean and obese mice and found substantial alterations, particularly in hepatic endoplasmic reticulum (ER), which undergoes massive structural reorganization characterized by marked disorganization of stacks of ER sheets3 and predominance of ER tubules. Finally, we demonstrated the functional importance of these structural changes by monitoring the effects of experimental recovery of the subcellular organization on cellular and systemic metabolism. We conclude that the hepatic subcellular organization of the ER architecture are highly dynamic, integrated with the metabolic state and critical for adaptive homeostasis and tissue health.


Subject(s)
Endoplasmic Reticulum , Homeostasis , Liver , Animals , Endoplasmic Reticulum/metabolism , Liver/cytology , Mice , Microscopy/methods , Organelles
3.
Sci Signal ; 14(713): eabf2059, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34905386

ABSTRACT

Chronic metabolic inflammation is a key feature of obesity, insulin resistance, and diabetes. Here, we showed that altered regulation of the Ca2+ channel inositol trisphosphate receptor (IP3R) was an adipocyte-intrinsic event involved in the emergence and propagation of inflammatory signaling and the resulting insulin resistance. Inflammation induced by cytokine exposure in vitro or by obesity in vivo led to increases in the abundance and activity of IP3Rs and in the phosphorylation of the Ca2+-dependent kinase CaMKII in adipocytes in a manner dependent on the kinase JNK. In mice, adipocyte-specific loss of IP3R1/2 protected against adipose tissue inflammation and insulin resistance, despite the mice exhibiting substantial diet-induced weight gain. Thus, this work suggests that increased IP3R activity is a key link between obesity, inflammation, and insulin resistance. These data also suggest that approaches to target IP3R-mediated Ca2+ homeostasis in adipocytes may offer new therapeutic opportunities against metabolic diseases, especially because GWAS studies also implicate this locus in human obesity.


Subject(s)
Adipocytes , Obesity , Humans , Inflammation , Signal Transduction
4.
Elife ; 62017 12 15.
Article in English | MEDLINE | ID: mdl-29243589

ABSTRACT

Defective Ca2+ handling is a key mechanism underlying hepatic endoplasmic reticulum (ER) dysfunction in obesity. ER Ca2+ level is in part monitored by the store-operated Ca2+ entry (SOCE) system, an adaptive mechanism that senses ER luminal Ca2+ concentrations through the STIM proteins and facilitates import of the ion from the extracellular space. Here, we show that hepatocytes from obese mice displayed significantly diminished SOCE as a result of impaired STIM1 translocation, which was associated with aberrant STIM1 O-GlycNAcylation. Primary hepatocytes deficient in STIM1 exhibited elevated cellular stress as well as impaired insulin action, increased glucose production and lipid droplet accumulation. Additionally, mice with acute liver deletion of STIM1 displayed systemic glucose intolerance. Conversely, over-expression of STIM1 in obese mice led to increased SOCE, which was sufficient to improve systemic glucose tolerance. These findings demonstrate that SOCE is an important mechanism for healthy hepatic Ca2+ balance and systemic metabolic control.


Subject(s)
Calcium/metabolism , Hepatocytes/metabolism , Obesity/physiopathology , Stromal Interaction Molecule 1/metabolism , Animals , Cations, Divalent/metabolism , Cells, Cultured , Endoplasmic Reticulum/metabolism , Gene Deletion , Gene Expression , Glycosylation , Mice, Obese , Stromal Interaction Molecule 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...