Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(3): 3585-3596, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297576

ABSTRACT

Refractory metal nitrides have recently gained attention in various fields of modern photonics due to their cheap and robust production technology, silicon-technology compatibility, high thermal and mechanical resistance, and competitive optical characteristics in comparison to typical plasmonic materials like gold and silver. In this work, we demonstrate that by varying the stoichiometry of sputtered nitride films, both static and ultrafast optical responses of refractory metal nitrides can efficiently be controlled. We further prove that the spectral changes in ultrafast transient response are directly related to the position of the epsilon-near-zero region. At the same time, the analysis of the temporal dynamics allows us to identify three time components: the "fast" femtosecond one, the "moderate" picosecond one, and the "slow" at the nanosecond time scale. We also find out that the non-stoichiometry does not significantly decrease the recovery time of the reflectance value. Our results show the strong electron-phonon coupling and reveal the importance of both the electron and lattice temperature-induced changes in the permittivity near the ENZ region and the thermal origin of the long tail in the transient optical response of refractory nitrides.

2.
ACS Photonics ; 10(11): 3805-3820, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38027250

ABSTRACT

The engineering of the spatial and temporal properties of both the electric permittivity and the refractive index of materials is at the core of photonics. When vanishing to zero, those two variables provide efficient knobs to control light-matter interactions. This Perspective aims at providing an overview of the state of the art and the challenges in emerging research areas where the use of near-zero refractive index and hyperbolic metamaterials is pivotal, in particular, light and thermal emission, nonlinear optics, sensing applications, and time-varying photonics.

3.
ACS Appl Mater Interfaces ; 15(29): 35692-35700, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37435778

ABSTRACT

Understanding phonon transport and thermal conductivity of layered materials is not only critical for thermal management and thermoelectric energy conversion but also essential for developing future optoelectronic devices. Optothermal Raman characterization has been a key method to identify the properties of layered materials, especially transition-metal dichalcogenides. This work investigates the thermal properties of suspended and supported MoTe2 thin films using the optothermal Raman technique. We also report the investigation of the interfacial thermal conductance between the MoTe2 crystal and the silicon substrate. To extract the thermal conductivity of the samples, temperature- and power-dependent measurements of the in-plane E2g1 and out-of-plane A1g optical phonon modes were performed. The results show remarkably low in-plane thermal conductivities at room temperature, at around 5.16 ± 0.24 W/m·K and 3.72 ± 0.26 W/m·K for the E2g1 and the A1g modes, respectively, for the 17 nm thick sample. These results provide valuable input for the design of electronic and thermal MoTe2-based devices where thermal management is vital.

4.
J Phys Chem Lett ; 14(18): 4192-4199, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37115195

ABSTRACT

The perovskite-inspired Cu2AgBiI6 (CABI) absorber shows promise for low-toxicity indoor photovoltaics. However, the carrier self-trapping in this material limits its photovoltaic performance. Herein, we examine the self-trapping mechanism in CABI by analyzing the excited-state dynamics of its absorption band at 425 nm, which is responsible for the self-trapped exciton emission, using a combination of photoluminescence and ultrafast transient absorption spectroscopies. Photoexcitation in CABI rapidly generates charge carriers in the silver iodide lattice sites, which localize into the self-trapped states and luminesce. Furthermore, a Cu-Ag-I-rich phase that exhibits similar spectral responses as CABI is synthesized, and a comprehensive structural and photophysical study of this phase provides insights into the nature of the excited states of CABI. Overall, this work explains the origin of self-trapping in CABI. This understanding will play a crucial role in optimizing its optoelectronic properties. It also encourages compositional engineering as the key to suppressing self-trapping in CABI.

5.
Nano Lett ; 23(8): 3122-3127, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-36867120

ABSTRACT

Conventional plasmonic nanoantennas enable scattering and absorption bands at the same wavelength region, making their utilization to full potential impossible for both features simultaneously. Here, we take advantage of spectrally separated scattering and absorption resonance bands in hyperbolic meta-antennas (HMA) to enhance the hot-electron generation and prolong the relaxation dynamics of hot carriers. First, we show that HMA enables extending plasmon-modulated photoluminescence spectrum toward longer wavelengths due to its particular scattering spectrum, in comparison to the corresponding nanodisk antennas (NDA). Then, we demonstrate that the tunable absorption band of HMA controls and modifies the lifetime of the plasmon-induced hot electrons with enhanced excitation efficiency in the near-infrared region and also broadens the utilization of the visible/NIR spectrum in comparison to NDA. Thus, the rational heterostructures designed by plasmonic and adsorbate/dielectric layers with such dynamics can be a platform for optimization and engineering the utilization of plasmon-induced hot carriers.

7.
ACS Photonics ; 9(7): 2287-2294, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35880073

ABSTRACT

Actively controllable photoluminescence is potent for a wide variety of applications from biosensing and imaging to optoelectronic components. Traditionally, methods to achieve active emission control are limited due to complex fabrication processes or irreversible tuning. Here, we demonstrate active emission tuning, achieved by changing the ambient humidity in a fluorescent dye-containing hydrogel integrated into a metal-insulator-metal (MIM) system. Altering the overlapping region of the MIM cavity resonance and the absorption and emission spectra of the dye used is the underlying principle to achieving tunability of the emission. We first verify this by passive tuning of cavity resonance and further experimentally demonstrate active tuning in both air and aqueous environments. The proposed approach is reversible, easy to integrate, and spectrally scalable, thus providing opportunities for developing tunable photonic devices.

8.
Nat Commun ; 13(1): 3114, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35662246

ABSTRACT

In quantum optical Enhancement of Index of Refraction (EIR), coherence and quantum interference render the atomic systems to exhibit orders of magnitude higher susceptibilities with vanishing or even negative absorption at their resonances. Here we show the plasmonic analogue of the quantum optical EIR effect in an optical system and further implement this in a linear all-optical switching mechanism. We realize plasmon-induced EIR using a particular plasmonic metasurface consisting of a square array of L-shaped meta-molecules. In contrast to the conventional methods, this approach provides a scheme to modulate the amplitude of incident signals by coherent control of absorption without implementing gain materials or nonlinear processes. Therefore, light is controlled by applying ultra-low intensity at the extreme levels of spatiotemporal localization. In the pursuit of potential applications of linear all-optical switching devices, this scheme may introduce an effective tool for improving the modulation strength of optical modulators and switches through the amplification of input signals at ultra-low power.

9.
Opt Express ; 30(6): 8723-8733, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299318

ABSTRACT

We study a polymer-based hyperbolic metamaterial (HMM) structure composed of three Au-polymer bilayers with a hyperbolic dispersion relation. Using an effective refractive index retrieval algorithm, we obtain the effective permittivity of the experimentally fabricated polymer-based structure. In particular, the unique polymer-based HMM shows the existence of high-k modes that propagate in the metal-dielectric multilayered structure due to the excitation of bulk plasmon-polaritonic modes. Moreover, we compare the experimental luminescence and fluorescence lifetime results of the multilayered Au and a dye-doped polymer (PMMA) to investigate the dynamics of three different emitters, each incorporated within the unique polymer-based HMM structure. With emitters closer to the epsilon-near-zero region of the HMM, we observed a relatively high shortening of the average lifetime as compared to other emitters either close or far from the epsilon-near-zero region. This served as evidence of coupling between the emitters and the HMM as well as confirmed the increase in the non-radiative recombination rate of the different emitters. We also show that the metallic losses of a passive polymer-based HMM can be greatly compensated by a gain material with an emission wavelength close to the epsilon-near-zero region of the HMM. These results demonstrate the unique potential of an active polymer-based hyperbolic metamaterial in loss compensation, quantum applications, and sub-wavelength imaging techniques.

10.
Opt Lett ; 47(21): 5553-5556, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-37219267

ABSTRACT

Resonances are the cornerstone of photonic applications in many areas of physics and engineering. The spectral position of a photonic resonance is dominated by the structure design. Here, we devise a polarization-independent plasmonic structure comprising nanoantennas with two resonances on an epsilon-near-zero (ENZ) substrate in order to loosen this correlation to obtain less sensitivity to geometrical perturbations of the structure. Compared with the bare glass substrate, the designed plasmonic nanoantennas on an ENZ substrate exhibit a nearly three-fold reduction only in the resonance wavelength shift near the ENZ wavelength as a function of antenna length.

11.
ACS Appl Mater Interfaces ; 13(42): 50564-50572, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34643385

ABSTRACT

A tunable reflectance filter based on a metal-hydrogel-metal structure responsive to humidity and temperature is reported. The filter employs a poly(N-isopropylacrylamide)-acrylamidobenzophenone (PNIPAm-BP) hydrogel as an insulator layer in the metal-insulator-metal (MIM) assembly. The optical resonance of the structure is tunable by water immersion across the visible and near-infrared range. Swelling/deswelling and the volume phase transition of the hydrogel allow continuous reversible humidity- and/or temperature-induced tuning of the optical resonance. This work paves the way toward low-cost large-area fabrication of actively tunable reversible photonic devices.

12.
Phys Rev Lett ; 127(15): 153902, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34678032

ABSTRACT

We demonstrate, theoretically, how the insertion of an enhanced epsilon-near-zero (EENZ) mirror in a laser cavity grants exceptional control over the coherence properties of the emitted light beam. By exploiting the peculiar sensitivity to polarization of EENZ materials, we achieve superior control over the spatial coherence of the emitted laser light, which can be switched at will between nearly incoherent and fully coherent, solely by means of polarization optics. Our EENZ cavity design is expected to be an efficient, compact, reconfigurable, and easily scalable source of light for illumination and speckle contrast imaging, as well as any other application that benefits from controlled spatial coherence.

13.
ACS Appl Nano Mater ; 4(9): 8699-8705, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34595402

ABSTRACT

Planar metasurfaces provide exceptional wavefront manipulation at the subwavelength scale by controlling the phase of the light. Here, we introduce an out-of-plane nanohole-based metasurface design with the implementation of a unique self-rolling technique. The photoresist-based technique enables the fabrication of the metasurface formed by nanohole arrays on gold (Au) and silicon dioxide (SiO2) rolled-up microtubes. The curved nature of the tube allows the fabrication of an out-of-plane metasurface that can effectively control the wavefront compared to the common planar counterparts. This effect is verified by the spectral measurements of the fabricated samples. In addition, we analytically calculated the dispersion relation to identify the resonance wavelength of the structure and numerically calculate the phase of the transmitted light through the holes with different sizes. Our work forms the basis for the unique platform to introduce a new feature to the metasurfaces, which may find many applications from stacked metasurface layers to optical trapping particles inside the tube.

14.
Opt Lett ; 46(14): 3464-3467, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34264239

ABSTRACT

In this paper, the generation of additive red-green-blue (RGB) colors in reflectance mode with near unity amplitude is demonstrated. For this purpose, a multilayer structure made of metal-insulator-metal-semiconductor-insulator stacks is designed to achieve >0.9 reflection peaks with full-width-at-half-maximum values <0.3λpeak. The proposed design also shows near zero reflection in off-resonance spectral ranges, and this, in turn, leads to high color purity. The optimized designs are fabricated, and simulation and theoretical results are verified with characterization findings. This work demonstrates the potential of multilayer tandem cavity designs in the realization of lithography-free large-scale compatible functional optical coatings.

15.
Sci Adv ; 4(1): eaao1749, 2018 01.
Article in English | MEDLINE | ID: mdl-29322094

ABSTRACT

Metamaterials bring subwavelength resonating structures together to overcome the limitations of conventional materials. The realization of active metadevices has been an outstanding challenge that requires electrically reconfigurable components operating over a broad spectrum with a wide dynamic range. However, the existing capability of metamaterials is not sufficient to realize this goal. By integrating passive metamaterials with active graphene devices, we demonstrate a new class of electrically controlled active metadevices working in microwave frequencies. The fabricated active metadevices enable efficient control of both amplitude (>50 dB) and phase (>90°) of electromagnetic waves. In this hybrid system, graphene operates as a tunable Drude metal that controls the radiation of the passive metamaterials. Furthermore, by integrating individually addressable arrays of metadevices, we demonstrate a new class of spatially varying digital metasurfaces where the local dielectric constant can be reconfigured with applied bias voltages. In addition, we reconfigure resonance frequency of split-ring resonators without changing its amplitude by damping one of the two coupled metasurfaces via graphene. Our approach is general enough to implement various metamaterial systems that could yield new applications ranging from electrically switchable cloaking devices to adaptive camouflage systems.

16.
ACS Nano ; 12(1): 504-512, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29178780

ABSTRACT

Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.

17.
Opt Express ; 25(25): 30827-30842, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29245763

ABSTRACT

In this work, a new plasmonic bulls-eye structure is introduced to efficiently harvest the emitted light from diamond nitrogen vacancy (NV) centers. We show that the presence of a simple metal sub-layer underneath of a conventional bulls-eye antenna, separated by a dielectric layer, results in the spontaneous emission enhancement and increment in out-coupled light intensity. High Purcell factor is accessible in such a structure, which consequently boosts efficiency of the radiated light intensity from the structure. The structure shows considerable enhancement in far-field intensity, about three times higher than that of a one-side corrugated (conventional) optimized structure. In addition, we study for the first time asymmetric structures to steer emitted beams in two-axis. Our results show that spatial off-axial steering over a cone is approachable by introducing optimal asymmetries to grooves and ridges of the structure. The steered light retains a level of intensity even higher than conventional symmetric structures. A high value of directivity of 16 for off-axis steering is reported.

18.
Sci Rep ; 7(1): 4741, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28684779

ABSTRACT

We numerically validate and experimentally realize considerable funneling of electromagnetic energy through a subwavelength aperture that is covered with an epsilon-near-zero metamaterial (ENZ). The epsilon-near-zero metamaterial is composed of two layers of metasurfaces and operates at microwave frequencies. We demonstrate that the presence of the metamaterial at the inner and outer sides of the aperture not only lead to a significant enhancement in light transmission, but also cause a directional emission of light extracting from this hybrid system. In addition to these experimental results, we theoretically demonstrate the same concept in mid-IR region for a subwavelength gold aperture with indium tin oxide as an epsilon-near-zero material. Moreover, we found that using a dielectric spacer in-between the sunwavelength aperture and the ENZ medium, it is possible to red-shift the enhancement/directional frequency of the system.

19.
Nanoscale ; 9(19): 6558-6566, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28470299

ABSTRACT

We study the exciton-plasmon dynamics that lead to optical loss mitigation via ultrafast transient absorption spectroscopy (UTAS) on hybrid aggregates of core-shell quantum dots (QDs) and Au nanoparticles (NPs). We highlight that generating hot electrons in plasmonic NPs contributes to the transient differential absorption spectrum under optical excitation. The results suggest modifying the method of analyzing the transient absorption spectra of loss mitigated systems. Additionally, we investigate the effect of Electron Oscillation frequency-Phonon Resonance Detuning (EOPRD) on loss mitigation efficiency. Moreover, power dependent UTAS reveal a frequency pulling like effect in the transient bleach maximum towards the gain emission. We show that the appropriate choice of the pump wavelength and by changing the pump power we can conclusively prove the existence of loss mitigation using UTAS. Finally, we study the transient kinetics of hybrid gain-plasmon systems and report interesting hybrid transient kinetics.

20.
Opt Express ; 22(18): 21806-19, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25321556

ABSTRACT

The dispersion properties of rod-type chirped photonic crystals (PhCs) and non-channeled transmission in the direction of the variation of structural parameters from one cell of such a PhC to another are studied. Two types of configurations that enable multiple slow waves but differ in the utilized chirping scheme are compared. It is demonstrated that the multiple, nearly flat bands with a group index of refraction exceeding 180 can be obtained. For these bands, transmission is characterized by multiple narrow peaks of perfect transmission, strong field enhancement inside the slab, and large values of the Q-factor. Among the bands, there are some that show negative phase velocity. Symmetry with respect to the slab mid-plane must be kept in order to obtain constructive interferences that are necessary for reflection-free transmission. It is shown that 15 and more slow wave bands can be obtained in one configuration. The corresponding transmission peaks are well separated from each other, being the only significant feature of the transmission spectrum, while the Q-factor can exceed 105. The observed features are preserved in a wide range of the incidence angle variation. They can be used for tuning the locations and spectral widths of the transmission peaks. Some comparisons with the chirped multilayer structures have been carried out.

SELECTION OF CITATIONS
SEARCH DETAIL
...