Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Anim Sci ; 97(12): 4987-4998, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31679025

ABSTRACT

This study evaluated the effects of supplementing dry live yeast (LY; Saccharomyces cerevisiae) on in vitro gas production (IVGP) fermentation dynamics, pH, and CH4 concentration at 48 h, and in situ rumen parameters and digestibility of DM (DMD) and NDF (NDFD) of growing cattle during 3 feeding phases: grower (GRW) for 17 d (38% steamed-flaked corn; SFC), transition (TRANS) for 15 d (55.5% SFC: 1.2 Mcal/kg NEg), and finisher (FIN) for 13 d (73% SFC: 1.23 Mcal/kg NEg). Twenty British-crossbred, ruminally cannulated steers (183 kg ± 44 kg) 6 mo of age were blocked by weight into 5 pens containing Calan gate feeders and received a control (CON) diet (17.2% CP, 35.8% NDF, 86.7% DM) without LY on days -12 to 0. After that, animals were randomly assigned to treatments (TRT), 5 animals per TRT: CON or LY at inclusion rates of 5 g/d (LY1), 10 g/d (LY2), or 15 g/d (LY3) top dressed every morning at 0800 for 45 d. The DMD and NDFD were assessed during 7 separate collection days using in situ nylon bags containing 5 g of GRW, TRANS, or FIN diets, incubated at 1200 for 48 h. Protozoa counts (PC) were determined during 5 collection periods. Data were analyzed as a repeated measure within a randomized complete block design, assuming a random effect of the pen. For GRW, TRT altered the total gas production of the nonfiber carbohydrate (NFC; P = 0.045) and the fractional rate of degradation (kd) of the fiber carbohydrate (FC) pool (P = 0.001) in a cubic pattern (P ≤ 0.05): LY2 had the most gas production and fastest kd. TRT also influenced DMD (P = 0.035) and NDFD (P = 0.012) with LY2 providing the greatest digestibility. For TRANS, TRT tended to affect the NFC kd (P = 0.078) and influenced pH (P = 0.04) and DMD (P < 0.001) in which LY2 yielded the fastest kd, highest pH, and greatest DMD. For FIN, there was an effect of TRT on total gas production (P < 0.001) and kd (P = 0.004) of the NFC pool, FC kd (P = 0.012), in vitro CH4 concentration (P < 0.001), PC (P < 0.001), DMD (P = 0.039), and NDFD (P = 0.008). LY1 had the highest PC and provided the greatest DMD and NDFD. LY2 had the fastest kd of both the NFC and FC pools and had the least CH4 concentration. LY3 had the greatest NFC gas production. No specific dose-response pattern was observed, but 10 g/d provided the most beneficial result for all diets. We concluded that supplementation with LY affected IVGP as well as ruminal parameters and digestibilities.


Subject(s)
Animal Feed/analysis , Digestion/physiology , Rumen/metabolism , Yeast, Dried/pharmacology , Animals , Cattle , Detergents , Diet/veterinary , Dietary Fiber/metabolism , Fermentation , Male , Saccharomyces cerevisiae
3.
J Anim Sci ; 97(3): 1347-1363, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30753501

ABSTRACT

The objective of this trial was to determine the benefits of supplementing active dried yeast (ADY; 3 × 1010 CFU/d of Saccharomyces cerevisiae) in diets of growing and finishing steers on ruminal pH and liver health, and evaluate the relationship of these variables with performance traits. Growing beef steers (n = 120) were blocked by weight (i.e., heavy and light) and allocated to 1 of 4 pens in an automated feed intake monitoring system. Steers were fed either control (CON; no ADY) or ADY supplemented in 4 sequential diets: grower diet from days 0 to 70, 2 step up diets (STEP1 and STEP2) for 7 d each, and finishing diet from days 85 to 164. Indwelling rumen boli were administered to monitor rumen pH during days 56 to 106 during the dietary transition. An exchange of pen assignment, within block, occurred on day 70 resulting in 4 final treatment (TRT) assignments: steers fed CON before and after the exchange (CC; n = 30), steers fed CON before and ADY after the exchange (CY; n = 30), steers fed ADY before and CON after the exchange (YC; n = 30), and steers fed ADY (YY; n = 30). Ruminal parameters were analyzed as a randomized complete block design with repeated measures of day, diet and TRT as fixed effects, and block as random effects, using 2 approaches: preliminary analysis of the means or drift analysis (DA; units change from basal values over time). Ruminal pH duration (DUR) below 6.0 (P = 0.05) and 5.8 (P = 0.05) was greater for CY steers than CC steers. Acidosis bout prevalence (pH < 5.6 for 180 consecutive minutes; P < 0.01) and bout DUR (P = 0.05) were greater for CY than other TRT groups. The DA indicated that the ruminal pH variables range, variance, and amplitude of steers in the YC group drifted further from basal pH values than CY and YY steers during the dietary transition (P ≤ 0.02), indicating that removing ADY during the dietary transition was not favorable, but including ADY may reduce ruminal fluctuation. Steers with fewer days experiencing bouts (DEB) had numerically greater ADG (P = 0.11) and tended to have greater G:F (P = 0.06). Liver abscess severity negatively affected ADG (P = 0.04). However, liver abscess severity was not affected by DEB (P = 0.90). There is evidence to suggest that the addition of the specific ADY strain in the diets of beef cattle during the dietary transition may aid in ruminal stabilization, but our study did not find evidence that acidosis bouts were related to abscess prevalence or severity.


Subject(s)
Acidosis/veterinary , Animal Feed/analysis , Cattle Diseases/prevention & control , Dietary Supplements , Liver Abscess/veterinary , Yeast, Dried/pharmacology , Acidosis/epidemiology , Acidosis/prevention & control , Animals , Cattle , Cattle Diseases/epidemiology , Diet/veterinary , Hydrogen-Ion Concentration/drug effects , Liver/drug effects , Liver/physiology , Liver Abscess/epidemiology , Liver Abscess/prevention & control , Lung/drug effects , Lung/physiology , Male , Prevalence , Random Allocation , Rumen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...