Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 96(5): e11036, 2024 May.
Article in English | MEDLINE | ID: mdl-38740567

ABSTRACT

The cheese making and vegetable processing industries generate immense volumes of high-nitrogen wastewater that is often treated at rural facilities using land applications. Laboratory incubation results showed denitrification decreased with temperature in industry facility soils but remained high in soils from agricultural sites (75% at 2.1°C). 16S rRNA, phospholipid fatty acid (PLFA), and soil respiration analyses were conducted to investigate potential soil microbiome impacts. Biotic and abiotic system factor correlations showed no clear patterns explaining the divergent denitrification rates. In all three soil types at the phylum level, Actinobacteria, Proteobacteria, and Acidobacteria dominated, whereas at the class level, Nitrososphaeria and Alphaproteobacteria dominated, similar to denitrifying systems such as wetlands, wastewater resource recovery facilities, and wastewater-irrigated agricultural systems. Results show that potential denitrification drivers vary but lay the foundation to develop a better understanding of the key factors regulating denitrification in land application systems and protect local groundwater supplies. PRACTITIONER POINTS: Incubation study denitrification rates decreased as temperatures decreased, potentially leading to groundwater contamination issues during colder months. The three most dominant phyla for all systems are Actinobacteria, Proteobacteria, and Acidobacteria. The dominant class for all systems is Nitrosphaeria (phyla Crenarchaeota). No correlation patterns between denitrification rates and system biotic and abiotic factors were observed that explained system efficiency differences.


Subject(s)
Cheese , Denitrification , Soil Microbiology , Vegetables , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Wastewater/chemistry , Waste Disposal, Fluid/methods , Soil/chemistry
2.
Sci Total Environ ; 757: 143825, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33280872

ABSTRACT

Due to the enhancement of human activities on the global scale, the total amount of atmospheric nitrogen (N) deposition and the rate keep increasing, which seriously affect the structure and function of terrestrial ecosystems. In order to study the effects of N deposition on the soil structure and function of coastal saline wetlands, we established a long-term nitrogen deposition simulation platform in 2012 in the Yellow River delta (YRD). Herein, we analyzed the composition and diversity of the soil microbial community under different N deposition treatments (LNN, MNN and HNN, which stand for 50 kg N ha-1 yr-1, 100 kg N ha-1 yr-1, and 200 kg N ha-1 yr-1) and in a water-only control (CK). The results showed that with the increasing level of N deposition, α-diversity (Shannon and Simpson indices) decreased significantly, and the composition of the microbial community changed. At the phylum level, compared with CK, the relative abundance of Chloroflexi increased significantly under the treatment of HNN (P = 0.002), but the relative abundance of Chlorobi (P = 0.013) and Verrucomicrobia (P = 0.035) decreased significantly. At the genus level, compared with CK, the relative abundance of Bacillus (P = 0.01) and Halomonas (P = 0.042) increased significantly with HNN treatment. Bacillus and Nitrococcus showed a significant correlation with soil NH4+-N. The results suggest that the response of microorganisms to N deposition treatments varied by the concentration, and the deposition of a high concentration would increase the nutrients in the soil, but reduce the diversity of soil microorganisms, causing a negative impact on the coastal wetland ecosystem of the YRD.


Subject(s)
Microbiota , Wetlands , China , Humans , Nitrogen/analysis , Rivers , Soil , Soil Microbiology
3.
Sci Total Environ ; 625: 782-791, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29306166

ABSTRACT

Diurnal freeze-thaw cycles (FTCs) occur in the spring and autumn in boreal wetlands as soil temperatures rise above freezing during the day and fall below freezing at night. A surge in methane emissions from these systems is frequently documented during spring FTCs, accounting for a large portion of annual emissions. In boreal wetlands, methane is produced as a result of syntrophic microbial processes, mediated by a consortium of fermenting bacteria and methanogenic archaea. Further research is needed to determine whether FTCs enhance microbial metabolism related to methane production through the cryogenic decomposition of soil organic matter. Previous studies observed large methane emissions during the spring thawed period in the Sanjiang seasonal frozen marsh of Northeast China. To investigate how FTCs impact the soil microbial community and methanogen abundance and activity, we collected soil cores from the Sanjiang marsh during the FTCs of autumn 2014 and spring 2015. Methanogens were investigated based on expression level of the methyl coenzyme reductase (mcrA) gene, and soil bacterial and archaeal community structures were assessed by 16S rRNA gene sequencing. The results show that a decrease in bacteria and methanogens followed autumns FTCs, whereas an increase in bacteria and methanogens was observed following spring FTCs. The bacterial community structure, including Firmicutes and certain Deltaproteobacteria, was changed following autumn FTCs. Temperature and substrate were the primary factors regulating the abundance and composition of the microbial communities during autumn FTCs, whereas no factors significantly contributing to spring FTCs were identified. Acetoclastic methanogens from order Methanosarcinales were the dominant group at the beginning and end of both the autumn and spring FTCs. Active methanogens were significantly more abundant during the diurnal thawed period, indicating that the increasing number of FTCs predicted to occur with global climate change could potentially promote CH4 emissions in seasonal frozen marshes.


Subject(s)
Archaea/classification , Bacteria/classification , Methane/analysis , Seasons , Soil Microbiology , Wetlands , China , Climate Change , Cold Temperature , Microbial Consortia , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil
4.
Sci Total Environ ; 586: 1263-1271, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28233617

ABSTRACT

The question of where and how to carry out reclamation work in coastal areas is still not well addressed in coastal research. To answer the question, it is essential to quantify the impact of reclamation and the associated ecological and/or environmental responses. In this study, ordinary least square (OLS) analysis and geographical weighted regression (GWR) analysis were performed to identify the reclamation variables that affect soil and vegetation characteristics. Reclamation related variables, including residential population (RP), years of reclamation (YR), income per capita (IP), and land use-based human impact index (HII), were used to explain nitrate, ammonium, total phosphorous, and heavy metals in soil, and the height, density, and above-ground biomass of native hydrophytic vegetation. It was found that variables IP, RP, and HII could be used to explain the height of Scirpus and Phragmites australis as well as above-ground biomass with a R2 value of no >0.55, and almost all the variables could explain the hydrophytic vegetation characteristics with a higher R2 value. In comparison to OLS, GWR more reliably reflected the reclamation effects on soil and vegetation characteristics. By GWR analysis, total soil phosphorous, and nitrate and ammonium nitrogen could be explained by RP, YR, and HII, with the highest Ad-R2 value of 0.496, 0.631 and 0.632, respectively. Both of the GWR and OLS analysis revealed that HII and RP were the better variables for explaining the soil and vegetation characteristics. This work demonstrated that coastal reclamation was highly spatial dependent, which sheds a light on the future development of spatial explicit and process-based models to guide coastal reclamation around the world.


Subject(s)
Poaceae/growth & development , Soil/chemistry , Biomass , China , Conservation of Natural Resources , Metals, Heavy/analysis , Nitrogen/analysis , Phosphorus/analysis , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...