Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 178-179: 279-289, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28926792

ABSTRACT

The large rivers are main pathways for the delivery of suspended sediments into coastal environments, affecting the biogeochemical fluxes and the ecosystem functioning. The radionuclides from 238U and 232Th-series can be used to understand the dynamic processes affecting both catchment soil erosion and sediment delivery to oceans. Based on annual water discharge the Rhone River represents the largest river of the Mediterranean Sea. The Rhone valley also represents the largest concentration in nuclear power plants in Europe. A radioactive disequilibrium between particulate 226Ra(p) and 238U(p) was observed in the suspended sediment discharged by the Lower Rhone River (Eyrolle et al. 2012), and a fraction of particulate 234Th was shown to derive from dissolved 238U(d) (Zebracki et al. 2013). This extensive study has investigated the dissolved U isotopes distribution in the Lower Rhone River and its implication on particulate radionuclides disequilibrium within the decay series. The suspended sediment and filtered river waters were collected at low and high water discharges. During the 4-months of the study, two flood events generated by the Rhone southern tributaries were monitored. In river waters, the total U(d) concentration and U isotopes distribution were obtained through Q-ICP-MS measurements. The Lower Rhone River has displayed non-conservative U-behavior, and the variations in U(d) concentration between southern tributaries were related to the differences in bedrock lithology. The artificially occurring 236U was detected in the Rhone River at low water discharges, and was attributed to the liquid releases from nuclear industries located along the river. The (235U/238U)(d) activity ratio (=AR) in river waters was representative of the 235U natural abundance on Earth. The (226Ra/238U)(p) AR in suspended sediment has indicated a radioactive disequilibrium (average 1.3 ± 0.1). The excess of 234Th in suspended sediment =(234Thxs(p)) was apparent solely at low water discharges. The activity of 234Thxs(p) was calculated through gamma measurements and ranged from unquantifiable to 56 ± 14 Bq kg-1. The possibility of using 234Th as a tracer for the suspended sediment dynamics in large Mediterranean river was then discussed.


Subject(s)
Radiation Monitoring , Uranium/analysis , Water Pollutants, Radioactive/analysis , France , Geologic Sediments , Rivers , Switzerland , Water Pollution, Radioactive/statistics & numerical data
2.
J Environ Radioact ; 151 Pt 1: 328-340, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26588202

ABSTRACT

To investigate riverine transfers from contaminated soils of the Fukushima Prefecture in Japan to the marine environment, suspended sediments, filtered water, sediments and detrital organic macro debris deposited onto river beds were collected in November 2013 within small coastal rivers during conditions of low flow rates and low turbidity. River waters were directly filtered on the field and high efficiency well-type Ge detectors were used to analyse radiocaesium concentrations in very small quantities of suspended particles and filtered water (a few mg to a few g). For such base-flow conditions, our results show that the watersheds studied present similar hydro-sedimentary behaviours at their outlets and that the exports of dissolved and particulate radiocaesium are comparable. Moreover, the contribution of these rivers to the instantaneous export of radiocaesium to the ocean is similar to that of the Abukuma River. Our preliminary results indicate that, in the estuaries, radiocaesium concentrations in suspended sediments would be reduced by more than 80%, while radiocaesium concentration in filtered waters would be maintained. Significant correlations between radiocaesium concentrations and radiocaesium inventories in the soils of the catchments indicate that there was at that time little intra and inter-watershed variability in the transfer processes of radiocaesium from lands to rivers at this regional scale. The apparent liquid-solid partition coefficient (KD) values acquired for the lowest loads/finest particles complement the values acquired by using sediment traps and highlight the strong capacity of the smallest particles to transfer radiocaesium. Finally, but not least, our observations suggest that there could be a significant transfer of highly contaminated detrital biomass from forest litter to the downstream rivers in a rather conservative way.


Subject(s)
Cesium Radioisotopes/analysis , Geologic Sediments/analysis , Radiation Monitoring , Rivers/chemistry , Water Pollutants, Radioactive/analysis , Fukushima Nuclear Accident , Japan
3.
J Environ Radioact ; 141: 146-52, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25613358

ABSTRACT

Airborne activity levels of uranium and thorium series were measured in the vicinity (1.1 km) of a uranium (UF4) processing plant, located in Malvési, south of France. Regarding its impact on the environment, this facility is characterized by its routine atmospheric releases of uranium and by the emission of radionuclide-labelled particles from a storage pond filled with waste water or that contain dried sludge characterized by traces of plutonium and thorium ((230)Th). This study was performed during a whole year (November 2009-November 2010) and based on weekly aerosol sampling. Thanks to ICP-MS results, it was possible to perform investigations of uranium and thorium decay product concentration in the air. The number of aerosol filters sampled (50) was sufficient to establish a relationship between airborne radionuclide variations and the wind conditions. As expected, the more the time spent in the plume, the higher the ambient levels. The respective contributions of atmospheric releases and resuspension from local soil and waste ponds on ambient dust load and uranium-bearing aerosols were estimated. Two shutdown periods dedicated to facility servicing made it possible to estimate the resuspension contribution and to specify its origin (local or regional) according to the wind direction and remote background concentration. Airborne uranium mainly comes from the emission stack and, to a minor extent (∼20%), from wind resuspension of soil particles from the surrounding fields and areas devoted to waste storage. Moreover, weighed activity levels were clearly higher during operational periods than for shutdown periods.


Subject(s)
Air Pollutants, Radioactive/analysis , Soil Pollutants, Radioactive/analysis , Thorium/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis , France , Mass Spectrometry , Seasons , Wind
4.
Sci Total Environ ; 502: 122-32, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25255199

ABSTRACT

Delivery of suspended sediment from large rivers to marine environments has important environmental impacts on coastal zones. In France, the Rhone River (catchment area of 98,000 km(2)) is by far the main supplier of sediment to the Mediterranean Sea and its annual solid discharge is largely controlled by flood events. This study investigates the relevance of alternative and original fingerprinting techniques based on the relative abundances of a series of radionuclides measured routinely at the Rhone River outlet to quantify the relative contribution of sediment supplied by the main tributaries during floods. Floods were classified according to the relative contribution of the main subcatchments (i.e., Oceanic, Cevenol, extensive Mediterranean and generalised). Between 2000 and 2012, 221 samples of suspended sediment were collected at the outlet and were shown to be representative of all flood types that occurred during the last decade. Three geogenic radionuclides (i.e., (238)U, (232)Th and (40)K) were used as fingerprints in a multivariate mixing model in order to estimate the relative contribution of the main subcatchment sources-characterised by different lithologies-in sediment samples collected at the outlet. Results showed that total sediment supply originating from Pre-Alpine, Upstream, and Cevenol sources amounted to 10, 7 and 2.10(6)tons, respectively. These results highlight the role of Pre-Alpine tributaries as the main sediment supplier (53%) to the Rhone River during floods. Other fingerprinting approaches based on artificial radionuclide activity ratios (i.e., (137)Cs/(239+240)Pu and (238)Pu/(239+240)Pu) were tested and provided a way to quantify sediment remobilisation or the relative contributions of the southern tributaries. In the future, fingerprinting methods based on natural radionuclides should be further applied to catchments with heterogeneous lithologies. Methods based on artificial radionuclides should be further applied to catchments characterised by heterogeneous post-Chernobyl (137)Cs deposition or by specific releases of radioactive effluents.


Subject(s)
Cesium Radioisotopes/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Radioactive/analysis , France , Geologic Sediments/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...