Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 34(16): 4486-94, 2006.
Article in English | MEDLINE | ID: mdl-16945951

ABSTRACT

RNA interference (RNAi) has great potential as a tool for studying gene function in mammals. However, the specificity and magnitude of the in vivo response to RNAi remains to be fully characterized. A molecular and phenotypic comparison of a genetic knockout mouse and the corresponding knockdown version would help clarify the utility of the RNAi approach. Here, we used hydrodynamic delivery of small interfering RNA (siRNA) to knockdown peroxisome proliferator activated receptor alpha (Ppara), a gene that is central to the regulation of fatty acid metabolism. We found that Ppara knockdown in the liver results in a transcript profile and metabolic phenotype that is comparable to those of Ppara-/- mice. Combining the profiles from mice treated with the PPARalpha agonist fenofibrate, we confirmed the specificity of the RNAi response and identified candidate genes proximal to PPARalpha regulation. Ppara knockdown animals developed hypoglycemia and hypertriglyceridemia, phenotypes observed in Ppara-/- mice. In contrast to Ppara-/- mice, fasting was not required to uncover these phenotypes. Together, these data validate the utility of the RNAi approach and suggest that siRNA can be used as a complement to classical knockout technology in gene function studies.


Subject(s)
PPAR alpha/genetics , RNA Interference , Animals , Gene Expression Profiling , Injections , Liver/metabolism , Mice , Mice, Knockout , PPAR alpha/metabolism , Phenotype , RNA, Small Interfering/administration & dosage , Transcription, Genetic
2.
Toxicol Sci ; 92(2): 578-86, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16707586

ABSTRACT

In rodents, treatment with peroxisome proliferator-activated receptor alpha (PPARalpha) agonists results in peroxisome proliferation, hepatocellular hypertrophy, and hepatomegaly. Drugs in the fibrate class of PPARalpha agonists have also been reported to produce rare skeletal muscle toxicity. Although target-driven hepatic effects of PPARalpha treatment have been extensively studied, a characterization of the transcriptional effects of this nuclear receptor/transcription factor on skeletal muscle responses has not been reported. In this study we investigated the effects of PPARalpha agonists on skeletal muscle gene transcription in rats. Further, since statins have been reported to preferentially effect type II muscle fibers, we compared PPARalpha signaling effects between type I and type II muscles. By comparing the transcriptional responses of agonists that signal through different nuclear receptors and using a selection/deselection analytical strategy based on ANOVA, we identified a PPARalpha activation signature that is evident in type I (soleus), but not type II (quadriceps femoris), skeletal muscle fibers. The fiber-type-selective nature of this response is consistent with increased fatty acid uptake and beta-oxidation, which represent the major clinical benefits of the hypolipidemic compounds used in this study, but does not reveal any obvious off-target pathways that may drive adverse effects.


Subject(s)
Muscle Fibers, Slow-Twitch/drug effects , Muscle, Skeletal/drug effects , PPAR alpha/agonists , Animals , Bezafibrate/pharmacology , Fatty Acids/metabolism , Female , Fenofibrate/pharmacology , Gene Expression Profiling , Glucose/metabolism , Hypolipidemic Agents/pharmacology , Liver/drug effects , Liver/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Pyrimidines/pharmacology , Rats , Rats, Inbred Strains , Rosiglitazone , Thiazolidinediones/pharmacology , Tretinoin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...