Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Chem ; 59 Pt A: 199-207, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26595893

ABSTRACT

INTRODUCTION: PLA2G7 encodes Lp-PLA2 having role in the formation of atherosclerotic plaques by catalyzing its substrate, phosphatydilcholine (PC), to be pro-inflammatory substances. The increased risk for coronary artery disease (CAD) in Asian population has been related with this enzyme. 279(Val→Phe) variant was reported to have a protective role against CAD due to, in part, secretion defect or loss of enzymatic function. Therefore, We study folding kinetics and enzyme-substrate interaction in 279(Val→Phe) by using clinical and computational biology approach. METHODS: Polymorphisms were detected by genotyping among 103 acute myocardial infarction patients and 37 controls. Folding Lp-PLA2 was simulated using GROMACS software by assessing helicity, hydrogen bond formation and stability. The interactions of Lp-PLA2 and its substrate were simulated using Pyrx software followed by molecular dynamics simulation using YASARA software. RESULT: Polymorphism of 279(Val→Phe) was represented by the change of nucleotide from G to T of 994th PLA2G7 gene. The folding simulation suggested a decreased percentage of α-helix, hydrogen bond formation, hydrogen bond stability and hydrophobicity in 279(Val→Phe). The PC did not interact with active site of 279(Val→Phe) as paradoxically observed in 279 valine. 279(Val→Phe) polymorphism is likely to cause unstable binding to the substrate and decrease the enzymatic activity as observed in molecular dynamics simulations. The results of our computational biology study supported a protected effect of 279(Val→Phe) Polymorphism showed by the odd ratio for MI of 0.22 (CI 95% 0.035-1.37) in this study. CONCLUSION: 279(Val→Phe) Polymorphism of Lp-PLA2 may lead to decrease the enzymatic activity via changes of folding kinetics and recognition to its substrate.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Phenylalanine/genetics , Polymorphism, Genetic/genetics , Protein Folding , Valine/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/chemistry , Acute Disease , Case-Control Studies , Computational Biology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Genotype , Humans , Kinetics , Male , Middle Aged , Molecular Dynamics Simulation , Software , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...