Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-37259413

ABSTRACT

This study aimed to obtain a microbial active compound as a novel antimalarial drug from Indonesian isolates. Target-based assays were used to screen for antimalarial activity against the parasite mitochondrial, Plasmodium falciparum malate:quinone oxidoreductase (PfMQO) enzyme. In total, 1600 crude extracts, composed from 800 fungi and 800 actinomycetes extracts, were screened against PfMQO, yielding six active extracts as primary hits. After several stages of stability tests, one extract produced by Aspergillus sp. BioMCC f.T.8501 demonstrated stable PfMQO inhibitory activity. Several purification stages, including OCC, TLC, and HPLC, were performed to obtain bioactive compounds from this active extract. All purification steps were followed by an assay against PfMQO. We identified the active compound as nornidulin based on its LC-MS and UV spectrum data. Nornidulin inhibited PfMQO activity at IC50 of 51 µM and P. falciparum 3D7 proliferation in vitro at IC50 of 44.6 µM, however, it had no effect on the growth of several mammalian cells. In conclusion, we isolated nornidulin from Indonesian Aspergillus sp. BioMCC f.T.8501 as a novel inhibitor of PfMQO, which showed inhibitory activity against the proliferation of P. falciparum 3D7 in vitro.

2.
Iran J Parasitol ; 14(3): 444-452, 2019.
Article in English | MEDLINE | ID: mdl-31673263

ABSTRACT

BACKGROUND: Malaria eradication has been complicated by the repeated emergence of antimalarial drug resistances. We aimed to determine whether a metabolite extract of Streptomyces hygrocopicus subsp. hygroscopicus could decrease the viability of Plasmodium falciparum 3D7 in vitro. METHODS: S. hygroscopicus subsp. hygroscopicus isolates were inoculated and fermented on the ISP4 medium. The fermented S. hygroscopicus was mixed with ethylacetate 1:5 (v/v), and the solvent phase was evaporated. Several concentrations of isolated extract was added to the P. falciparum 3D7 culture containing trophozoite and schizont stages in 24 wells plates when the degree of parasite-infected erythrocytes reached 5%, then incubated for 8 hours. DNA parasite density was measured using flow cytometry, parasite degree and morphology were observed under microscopic by Giemsa-stained smears. RESULTS: The metabolite extract affected the morphology of almost all of parasite asexual stages. Schizonts and trophozoites failed to grow and appeared damaged with pycnotic cores and loss of cytoplasmic content. At 8 hours there was a significant decrease in DNA parasite density in culture exposed to 2.6 mg/ml and 13 mg/ml (P = 0.002; P = 0.024) of the extract. The degree of parasite-infected erythrocytes was decreased from the beginning of exposure (0.02 mg/ml of the extract). There was a significant inverse correlation between the concentration of extract and the degree of parasite-infected erythrocytes as well as the density of DNA parasite (r = -0.772, P = 0.000; r =-0.753; P =0.000). CONCLUSION: Metabolite extract of S. hygroscopicus subsp. hygroscopicus causes morphological damage, decreases the degree of parasite-infected erythrocytes and the DNA density of P. falciparum 3D7 in vitro.

SELECTION OF CITATIONS
SEARCH DETAIL
...