Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Res ; : 119348, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844027

ABSTRACT

In this study, a UV-driven photocatalytic activation of peroxymonosulfate (PMS) system was constructed using bimetallic metal-organic frameworks to degrade pharmaceuticals and personal care products (PPCPs). Mn-MIL-53(Fe) was successfully synthesised by adjusting the doping ratio of Mn using solvothermal method. The removal of ibuprofen (IBP) by UV/Mn-MIL-53(Fe)/PMS process was as high as 79.7% in 30 min with a Mn doping ratio of 1.0 (molar ratio of Mn to Fe), and the reaction rate constant was 26.9% higher than undoped. Mn-MIL-53(Fe) had been systematically characterized in terms of its physical structure, microscopic morphology, surface functional groups and photoelectric properties. The mechanism investigation revealed that the cycling of Mn and Fe accelerated the rate of electron transfer in the system, which significantly increased the activation efficacy of PMS to generate more hydroxyl and sulfate radicals for IBP degradation. A total of 13 transformation products were detected during the degradation of IBP by the UV/Mn-MIL-53(Fe)/PMS process. Theoretical calculations were used to predict the sites on the IBP molecule that were vulnerable to attack, and four possible degradation pathways were deduced. The excellent stability and efficient catalytic properties of Mn-MIL-53(Fe) provided a promising solution to the problem of water treatment contaminated with PPCPs.

2.
Environ Pollut ; 348: 123865, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548162

ABSTRACT

Singlet oxygen (1O2) is a reactive species for the selective degradation of stubborn organic pollutants. Given its resistance to harsh water environment, the effective and exclusive generation of 1O2 is acknowledged as a key strategy to mitigate water production costs and ensure water supply safety. Herein, we synthesized MnOx intercalated MnFe layered double hydroxides (MF-MnOx) to selectively produce 1O2 through the activation of PMS. The distinctive confined structure endowed MF-MnOx with a special pathway for the PMS activation. The direct oxidation of BPA on the intercalated MnOx induced the charge imbalance in the MnFe-LDH layer, resulting in the selective generation of 1O2. Moreover, acceptable activity deterioration of MF-MnOx was observed in a 10 h continuous degradation test in actual water, substantiating the application potential of MF-MnOx. This work presents a novel catalyst for the selective production of 1O2, and evaluates its prospects in the remediation of micro-polluted water.


Subject(s)
Peroxides , Singlet Oxygen , Singlet Oxygen/chemistry , Peroxides/chemistry , Hydroxides/chemistry , Water , Oxygen
3.
J Environ Sci (China) ; 126: 656-667, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36503791

ABSTRACT

As an active metabolite of venlafaxine and emerging antidepressant, O-desmethylvenlafaxine (ODVEN) was widely detected in different water bodies, which caused potential harm to human health and environmental safety. In this study, the comparative work on the ODVEN degradation by UV (254 nm) and UV-LED (275 nm) activated sodium percarbonate (SPC) systems was systematically performed. The higher removal rate of ODVEN can be achieved under UV-LED direct photolysis (14.99%) than UV direct photolysis (4.57%) due to the higher values of photolysis coefficient at the wavelength 275 nm. Significant synergistic effects were observed in the UV/SPC (80.38%) and UV-LED/SPC (53.57%) systems and the former exhibited better performance for the elimination of ODVEN. The degradation of ODVEN all followed the pseudo-first-order kinetics well in these processes, and the pseudo-first-order rate constant (kobs) increased with increasing SPC concentration. Radicals quenching experiments demonstrated that both ·OH and CO3·- were involved in the degradation of ODVEN and the second-order rate constant of ODVEN with CO3·- (1.58 × 108 (mol/L)-1 sec-1) was reported for the first time based on competitive kinetic method. The introduction of HA, Cl-, NO3- and HCO3- inhibited the ODVEN degradation to varying degrees in the both processes. According to quantum chemical calculation, radical addition at the ortho-position of the phenolic hydroxyl group was confirmed to be the main reaction pathways for the oxidation of ODVEN by ·OH. In addition, the oxidation of ODVEN may involve the demethylation, H-abstraction, OH-addition and C-N bond cleavage. Eventually, the UV-LED/SPC process was considered to be more cost-effective compared to the UV/SPC process, although the UV/SPC process possessed a higher removal rate of ODVEN.


Subject(s)
Phenols , Humans , Desvenlafaxine Succinate , Venlafaxine Hydrochloride , Photolysis
4.
Water Res ; 223: 118989, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35998556

ABSTRACT

As a feed additive, p-arsanilic acid (p-ASA) is hardly metabolized in animal bodies and is excreted chemically unchanged via feces and urine, which can be transformed into more toxic inorganic arsenic species and other organic by-products upon degradation in the aquatic environment. In this study, UV-LED/persulfate (PS)/Fe(Ⅲ) and UV-LED/peroxymonosulfate (PMS)/Fe(Ⅲ) processes were developed to remove p-ASA and immobilize the formed inorganic arsenic via tuning solution pH. UV-LED/PMS/Fe(Ⅲ) (90.8%) presented the best performance for p-ASA degradation at pH 3.0, and the p-ASA degradation in these processes both followed the pseudo-first-order kinetics. The ∙OH played the major role in UV-LED/PS/Fe(Ⅲ) and UV-LED/PMS/Fe(Ⅲ) systems. Solution pH greatly affected the p-ASA degradation and the maximum removal can be achieved at pH 3.0 due to the presence of more Fe(OH)(H2O)52+. The dosages of Fe(III) and PMS (PS), SO42- and HCO3- significantly influenced the performance of p-ASA oxidation, while HA, Cl- and NO3- slightly affected the p-ASA degradation. According to quantum chemical calculation, radical addition on the C atom in the C-As bond of p-ASA was corroborated to be the dominant reaction pathway by SO4∙- and ∙OH. Additionally, the reactive sites and reasonable degradation pathways of p-ASA were proposed based on DFT calculation and HPLC/MS analysis. The release of inorganic arsenic in both processes can be effectively immobilized and the toxicity of the reaction solution dramatically reduced by adjusting solution pH to 6.0. UV-LED/PMS/Fe(Ⅲ) process was found to be more cost-effective than UV-LED/PS/Fe(Ⅲ) process at the low oxidant dosages.


Subject(s)
Arsenic , Water Pollutants, Chemical , Animals , Arsanilic Acid/chemistry , Arsenates , Arsenic/analysis , Ferric Compounds/chemistry , Oxidants , Oxidation-Reduction , Peroxides , Water Pollutants, Chemical/chemistry
5.
Chemosphere ; 307(Pt 4): 136072, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35988766

ABSTRACT

As a widely produced and used antibiotic, tetracycline (TC) has been frequently found in rivers, soil and drinking water. In this study, the degradation of TC was investigated by UV/Fe3+/persulfate (PS) coupled process. The degradation behavior was well fitted with pseudo-first-order model. Hydroxyl radicals (·OH), sulfate radicals (SO4-·) and superoxide radical (O2-·) were identified as the primary reactive oxygen species (ROS) in UV/Fe3+/PS process, the contribution to TC degradation were found to be 41.94%, 33.94% and 17.44% at pH 3.0, respectively. Fe(IV) generated from the system also played a crucial role in TC removal. The effects of process parameters (PS/Fe3+ dosages, pH, humic acid, Cl-, HCO3-, NO3- and CO32-) on degradation were investigated. It was found that the degradation of TC was highly pH-dependent, and the optimal performance was obtained at pH 3.0. Except for Cl-, the presence of HA, HCO3-, NO3- and CO32- inhibited TC degradation. The possible transformation pathway involving the hydroxylation, N-demethylation, hydrogenation and dehydroxylation was proposed. Furthermore, the toxicity and mutagenicity of TC and transformation products (TPs) were estimated using ECOSAR and TEST softwares, demonstrating that the toxicity level of most TPs was lower/equal to their precursors. The evaluation of DBPs showed that UV/Fe3+/PS process could reduce the potential of DBPs formation, especially for TCAA and TCM. Microbial community composition was analyzed by 16 S rDNA sequencing, and the relative abundance of ARG-carrying opportunistic pathogens was significantly declined after UV/Fe3+/PS treatment. In general, this study provides an economical, efficient and safe strategy for TC removal.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Anti-Bacterial Agents/analysis , DNA, Ribosomal , Drinking Water/analysis , Humic Substances/analysis , Iron/analysis , Kinetics , Oxidation-Reduction , Reactive Oxygen Species , Sulfates/chemistry , Superoxides/analysis , Tetracycline/analysis , Tetracycline/toxicity , Ultraviolet Rays , Water Pollutants, Chemical/analysis
6.
J Environ Manage ; 318: 115646, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35949095

ABSTRACT

The dewaterability of waste-activated sludge (WAS) has been extensively examined using zero-valent iron (ZVI)-based advanced oxidation processes (AOPs). However, the high dosage and low utilization efficiencies of ZVI cast doubt on the dependability and viability of ZVI-based AOPs. In this study, we successfully demonstrated pre-magnetization as an efficient, chemical-free, and ecological method for improving the efficiency of sludge dewatering by ZVI/persulfate (PS) process, in which the reduction ratios of capillary suction time (CST) and specific resistance to filtration (SRF) increased by 8.67% and 11.06% under optimal conditions, respectively. The highly active Fe2+ released during ZVI corrosion may be more essential than ZVI itself during PS activation, which could be strengthened by pre-magnetization. Both homogeneous and heterogeneous Fe2+ could react with PS to produce aqueous hydroxyl radicals (∙OH) and sulfate radicals (SO4-∙) as well as surface-bound ∙OH and SO4-∙, further decomposing bound-extracellular polymeric substances fractions, broking hydrophilic functional groups and compounds, altering protein secondary structure to expose more hydrophobic sites, and releasing abundant EPS-bound water. Due to the protection of tightly-bound extracellular polymeric substances (TB-EPS) and the competitive oxidation of organics released during the early disintegration stage, radical oxidation primarily occurs at extracellular levels, releasing a bit of intracellular water. Besides, polysaccharides in TB-EPS may function a more significant role in flocculation than proteins, and a porous structure favorable to drainage will be formed after the pre-magnetized ZVI/PS treatment. The cost-benefit analysis further reveals that the Pre-ZVI/PS process presents high reusability and utilization, making it potential for particle application in sludge dewatering.


Subject(s)
Iron , Sewage , Filtration , Iron/chemistry , Oxidation-Reduction , Sewage/chemistry , Waste Disposal, Fluid/methods , Water/chemistry
7.
Sci Total Environ ; 847: 157690, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35905956

ABSTRACT

In this study, Fe2+ activated-PAA was developed as a novel technology to enhance sludge dewatering. The result showed that the filterability (CST0/CST) enhanced by 4.20 ± 0.14 times more than the control, and the SRF and bound water content decreased from 4.58 ± 0.07 × 1013 m/kg and 2.11 ± 0.28 g/g dry sludge to 9.47 ± 0.05 × 1012 m/kg and 1.27 ± 0.18 g/g dry sludge, respectively after the sludge was conditioned by 1.20 mM/g VSS Fe2+ and 1.20 mM/g VSS PAA. The dewatering performance, physicochemical properties, aggregation behaviors, and EPS fractions of sludge were compared before and after Fe2+/PAA and Fe2+/H2O2 conditionings. The results showed that Fe2+/PAA treatment was more competitive in enhancing dewaterability under neutral and alkaline conditions than Fe2+/H2O2 treatment but slightly weaker under acid conditions. Besides, it was found that the oxidation and re-flocculation behaviors were different in those two enhanced dewatering technologies due to the difference in the generated ROS. R-O was the primary radical in the Fe2+/PAA system, while OH was the major one in the Fe2+/H2O2 system. The mechanism analysis found that the Fe2+/PAA process caused harsher disintegration of sludge flocs, meaning more generation of fine particles. However, it exhibited less effect on reducing the energy barrier between sludge particles. Therefore, the Fe2+/PAA treated sludge presented weaker aggregation behaviors. The weaker aggregation was unfavorable for sludge dewatering because the weaker aggregated flocs were more easily fragmented, which hampered the consolidation of sludge cakes and removal of bound water. Moreover, loosely-bound extracellular polymeric substances, particularly tightly-bound extracellular polymeric substances, governed the sludge dewaterability.


Subject(s)
Hydrogen Peroxide , Sewage , Flocculation , Oxidation-Reduction , Reactive Oxygen Species , Sewage/chemistry , Waste Disposal, Fluid/methods , Water/chemistry
8.
Water Res ; 215: 118288, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35303562

ABSTRACT

Bromide (Br-), a ubiquitous species in natural water, is capable of reacting with sulfate radical (SO4∙-) and hydroxyl radical (∙OH) to form secondary reactive bromine species (RBS). The reaction routes can influence the degradation mechanisms and performance of these radicals for removal of target pollutants and may also form harmful bromine-containing disinfection by-products (Br-DBPs) during subsequent chlorination. In the present research, the UV-activated persulfate (PS) degradation of bisphenol A (BPA) was systematically examined in the presence of Br-. Results indicated that the presence of Br-enhanced the BPA degradation and both UV/PS and UV/PS/Br- processes followed the pseudo-first-order kinetics. At 0-0.8 mM Br-, 0.2 mM Br- exerted the best enhanced effect on BPA degradation, while RBS functioned as the major contributor in the presence of 0.05-0.5 mM Br-. Solution pH (6.0-8.0) barely affected the BPA degradation in the UV/PS system, but the introduction of Br- augmented the pH dependence. In the UV/PS/Br-system, the reaction rate constant of BPA increased/decreased with increasing PS/HA dosage, and was affected slightly in the presence of bicarbonate and chloride. According to the quantum chemical calculation, the second-order rate constants of BPA with ∙OH, SO4∙-, Br∙ and Br2∙- were calculated as 7.65 × 1010, 1.67 × 109, 1.77 × 108 and 2.83 × 102 M-1 s-1, respectively. Additionally, three degradation pathways of BPA were proposed based on DFT calculation and HPLC/MS analysis, and the formed bromine-containing products exhibited higher toxicity than BPA. Br-DBPs, particularly tribromomethane and tribromoacetic acid, generated from UV/PS/Br-pre-oxidation during BPA chlorination significantly increased the toxicity of total DBPs.


Subject(s)
Water Pollutants, Chemical , Water Purification , Benzhydryl Compounds , Bromides , Bromine , Oxidation-Reduction , Phenols , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Water Purification/methods
9.
Sci Total Environ ; 806(Pt 1): 150379, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34571222

ABSTRACT

Organoarsenic contaminants existing in water body threat human health and ecological environment due to insufficient bifunctional treatment technologies for organoarsenic degradation and inorganic arsenic immobilization. In order to safely and efficiently treat organoarsenic contaminants discharged into the aquatic environment, Co-Mn-Fe layered double hydroxide (CoMnFe-LDH) and Co-Mn-Fe layered double oxide (CoMnFe-LDO) were fabricated and employed as peroxymonosulfate (PMS) activator for organoarsenic degradation and inorganic arsenic immobilization, and p-arsanilic acid (p-ASA) was selected as target pollutant. Results demonstrated that the satisfactory removal of p-ASA (100.0%) in both CoMnFe-LDH/PMS and CoMnFe-LDO/PMS systems was obtained within 30 min, and substantial inorganic arsenic adsorption could be achieved (below 0.5 mg/L) in two systems with converting major inorganic arsenic species to arsenate. As XPS, ESR and quenching experiment revealed, the existence and generation of surface-bound radicals in two systems were identified. Based on density functional theory calculation and XPS analysis, the catalytic mechanism of CoMnFe-LDO/PMS system that PMS could be activated via direct electron transfer from adsorbed p-ASA was clarified, which differed from PMS activation via coupling with surface hydroxyl groups in CoMnFe-LDH/PMS system. Catalytic performance assessment under various critical operation parameters indicated that CoMnFe-LDH presented more stable ability of p-ASA removal in a wide pH range and complex aquatic environment. The recycle experiment demonstrated the excellent stability and reusability of CoMnFe-LDH(LDO). Besides, seven degradation products of p-ASA in CoMnFe-LDH/PMS system including phenolic compounds, azophenylarsonic acid, nitrobenzene and benzoquinne were identified by UV-Vis spectra and LC-TOF-MS analysis, and the corresponding degradation pathway was proposed. In summary, compared to CoMnFe-LDO/PMS, CoMnFe-LDH/PMS holds great promise for the development of an oxidation-adsorption process for efficient control of organoarsenic pollutant.


Subject(s)
Arsanilic Acid , Arsenic , Humans , Hydroxides , Peroxides
10.
Chemosphere ; 286(Pt 1): 131613, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34315080

ABSTRACT

N,N-Diethyl-3-methyl benzoyl amide (DEET) has been detected as an emerging pollutant in various water bodies because of its widespread use as an insect repellent. In this study, the combination of UV-LED275 and iron-containing coagulant (FeCl3) was used for the elimination of DEET in water. It was found that UV-LED275/FeCl3 (98 %) system presented a favorable removal of DEET compared with UV254/FeCl3 (59 %) and UV-LED275/Fe2(SO4)3 (81 %) processes at initial pH 3.5. DEET degradation by both UV-LED275/FeCl3 and UV-LED275/Fe2(SO4)3 processes followed pseudo-first-order kinetics with the calculated pseudo-first-order rate constants (kobs) of 0.0105 and 0.0046 cm2 mJ-1, respectively. The results of ESR analysis and radicals quenching experiments indicated that hydroxyl radicals (OH) and superoxide radicals (O2-) were responsible for DEET degradation in UV-LED275/FeCl3 process, and the former played the major role. An increase in FeCl3 dosage was beneficial to the degradation. In the UV-LED275/FeCl3 process, DEET degradation increased with a decrease in pH from 3.5 to 3.0, whereas it was almost completely suppressed with an increase in pH from 4.3 to 6.3. DEET degradation was almost unchanged after the introduction of NO3-, and it impeded after the addition of humic acid (HA), HCO3-, and SO42-. The plausible degradation pathway mainly involved hydroxylation, cleavage of the C-N bond, acetylation, and dealkylation. Among the disinfection by-products (DBPs) evaluated, UV-LED275/FeCl3 pretreatment generally increased the generation of trichloromethane, chloral hydrate, dichloroacetic acid, and trichloroacetic acid, which implied that further assessment of environmental risk was needed during its practical applications.


Subject(s)
Water Pollutants, Chemical , Water Purification , DEET , Iron , Kinetics , Oxidation-Reduction , Ultraviolet Rays , Water Pollutants, Chemical/analysis
11.
Sci Total Environ ; 799: 149382, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34358742

ABSTRACT

Fe(II)-activated sodium percarbonate (SPC) was an emerging technology for enhancing the dewaterability of waste activated sludge, and its operational parameters were systematically explored. The results showed that after the treatment by 1.20 mmol/g VSS SPC and 1.44 mmol/g VSS Fe(II) at initial pH 3.0, the water content and specific resistance to filtration remained at 76.05 ± 0.36% and 2.57 ± 0.08 × 1012 m·kg-1, respectively. The acid condition was instrumental in sludge dewatering, whereas overdosing Fe(II) or SPC imposed adverse effect. The conversion of EPS fractions was examined to elucidate the underlying mechanism, which indicated that a coexisting oxidation/flocculation process accounted for the improvement of sludge dewaterability. The stronger oxidative ·OH degraded the hydrophilic compounds (proteins and carbohydrates) of tightly-bound extracellular polymeric substance and the dissolved multivalence iron promoted solid-liquid separation. Additionally, the theoretical analysis (DFT calculation) demonstrated that the oxygen- and nitrogen-containing groups of EPS resulted in high-water holding capacity of sludge. The difficulty of destroying hydrophilic functional groups followed C=O > C-N > C-O during oxidation process. Moreover, Fe(II)/SPC treatment performed well in coliforms inactivation and phytotoxicity reduction compared with different ·OH-based advanced oxidation processes for sludge conditioning.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Carbonates , Ferrous Compounds , Oxidation-Reduction , Waste Disposal, Fluid , Water
12.
J Environ Manage ; 281: 111899, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33418390

ABSTRACT

The mass production of waste activated sludge in wastewater treatment plants may lead to environmental pollution and sludge dewatering is an essential process during its treatment. The oxidation of extracellular polymeric substances (EPS) was the core step to achieve deep sludge dewatering. In this study, thermally-activated sodium persulfate (SPS) process was managed to improve the dewaterability of waste activated sludge (WAS) and its internal mechanism was systematically elaborated. Experimental results showed that with 2.0 mmol/g VSS SPS at 80 °C, capillary suction time (CST) was roughly 59.74% of that in raw sludge. Under this condition, 14.66 ± 0.10 × 1011 kg/m of specific resistance to filtration (SRF) and 61.8% ± 0.1% of water content (WC) was determined, respectively. A solubilization/oxidation process was proposed to unravel the mechanism of the enhanced dewaterability of WAS in thermally-activated SPS process. Mild temperature efficiently disrupted the sludge flocs and broke cell walls, releasing large amounts of EPS into bulk phase. Meanwhile, mild temperature accelerated the decomposition of SPS to generate sulfate radicals (SO4-) and hydroxyl radicals (OH) for oxidizing EPS, facilitating the conversion of bound hydrated water into free water and achieving solid-water separation. The higher reaction temperature favored sludge dewatering, whereas overdosing SPS posed no significant impact. Further analysis illustrated that tyrosine protein-like, tryptophan protein-like, fulvic acid-like and humic acid-like substances in various EPS fractions together exerted the influence on sludge dewatering. Furthermore, the synergy process could alter the secondary structure of protein, which caused a loose structure of EPS and the exposure of hydrophobic sites, facilitating the dehydration of sludge flocs. The details of how thermally-activated SPS process enhanced sludge dewaterability provided the theoretical and technical basis for the application of the process under a real-world situation.


Subject(s)
Sewage , Waste Disposal, Fluid , Filtration , Oxidation-Reduction , Temperature , Water
13.
Chemosphere ; 255: 126962, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32402887

ABSTRACT

The degradation of N,N-diethyl-meta-toluamide (DEET) in aqueous solution by the UV/monochloramine (UV/NH2Cl) process was examined systematically in this study. DEET was resistant to UV photolysis and chloramination, while the synchronous combination of UV irradiation and NH2Cl can effectively eliminate DEET, which was caused by the generation of hydroxyl radicals and reactive chlorine species. The former played the critical role in DEET degradation, while the contribution of the latter can be ignored. Under all investigated experimental conditions, DEET degradation in the UV/NH2Cl process followed the pseudo-first-order kinetic model. The water quality parameters exerted the complicated impact. Reducing solution pH and raising water temperature both favored the DEET removal. The presence of sulfate, humic acid and fulvic acid accelerated the degradation, while the introduction of bicarbonate and high-concentration chloride retarded the removal. The plausible degradation pathways of DEET in the UV/NH2Cl process were proposed through the combination of QTOF/MS analysis and DFT calculation, and mainly involved in the cleavage of C-N bond, dealkylation, mono- and polyhydroxylation. The acute toxicity of reacted solution underwent a trend of first increasing and then decreasing with the prolonged irradiation time, which can be well illustrated by quantitative structure-activity relationship analysis. Electrical energy per order was employed to determine the energy consumption and the optimal conditions were determined as UV fluence of 369.9-493.2 mJ cm-2 and NH2Cl dosage of 5-20 mg L-1.


Subject(s)
DEET/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Chloramines , Chlorides , Chlorine , Hydroxyl Radical , Kinetics , Oxidation-Reduction , Photolysis , Ultraviolet Rays , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...