Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 12(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35407235

ABSTRACT

Here, we propose an optical bistable device structure with a few layers of graphene oxide integrated in the metal-dielectric-metal based asymmetric nanocavity. Through the light confinement in the nanocavity, the third order nonlinear absorption of graphene oxide can be significantly enhanced, which experimentally delivers low-threshold optical bistability at the visible wavelength of 532 nm with only 267 KW/cm2 intensity. In addition, the switching threshold can be further reduced via increasing the graphene oxide thickness, hence paving a new way for achieving tunable optical bistable devices at visible light frequencies.

2.
ACS Appl Mater Interfaces ; 13(39): 46566-46576, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34570471

ABSTRACT

High-density electronic defects at the surfaces and grain boundaries (GBs) of perovskite materials are the major contributor to suppressing the power conversion efficiency (PCE) and deteriorating the long-term stability of the solar devices. Hence, the judicious selection of chemicals for the passivation of trap states has been regarded as an effective strategy to enhance and stabilize the photovoltaic performance of solar devices. Here, we systematically investigated the passivation effects of four organic π-conjugated phenylboronic acid molecules: phenylboronic acid, 2-amino phenylboronic acid (2a), 3-amino phenylboronic acid (3a), and 4-amino phenylboronic acid (4a) by adding them into the methylammonium lead iodide (MAPbI3) precursor solution. We found that solar devices with an optimized 5% (mol %) 3a treatment achieve the best passivation effect due to the strong cross-linking ability via hydrogen bonding interactions between the I of the [PbI6]4- octahedral network of perovskite films and the cross-linking terminal groups [-B(OH)2, (-NH2)] of 3a. Moreover, the lone pair of electrons on the N atom of an amino group of 3a can passivate the uncoordinated Pb2+ defects at the surface/GBs. As a result, the 3a-passivated device shows a high open-circuit voltage of 1.13 V, which is a 14.1% improvement compared to the control device (0.99 V). Moreover, the reduced defect density and improved carrier lifetimes enabled a high PCE of 18.89% in our blade-coated champion inverted structure of MAPbI3 solar cells, with improved long-term stability.

3.
ACS Appl Mater Interfaces ; 12(50): 55830-55837, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33284590

ABSTRACT

Formamidinium lead triiodide (FAPbI3) exhibits the smallest band gap among lead halide perovskites, which is more desirable for solar cell applications compared to methylammonium-based counterparts. However, it remains a big challenge to prepare phase-pure α-FAPbI3 in addition to controlling the crystal morphology during film formation. Herein, we developed a temperature-assisted crystal growth to prepare high-quality thin films of α-FAPbI3 by sequential blade coating. It is found that depositing organic cation FAI at elevated temperatures facilitates the growth of α-FAPbI3, which otherwise yields mainly a yellow δ-phase at room temperature. In parallel, the crystal morphology of the perovskite films can be effectively manipulated by taking advantage of the porous structure of PbI2. Solar cells prepared with the blade-coated α-FAPbI3 yield a champion efficiency of 18.41%, which is among the highest values for FAPbI3-only solar devices. These results suggest that two-step sequential blade deposition offers a viable approach to fabricate high-quality α-FAPbI3 films for optoelectronic applications.

4.
Materials (Basel) ; 13(21)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138192

ABSTRACT

Although the efficiency of small-size perovskite solar cells (PSCs) has reached an incredible level of 25.25%, there is still a substantial loss in performance when switching from small size devices to large-scale solar modules. The large efficiency deficit is primarily associated with the big challenge of coating homogeneous, large-area, high-quality thin films via scalable processes. Here, we provide a comprehensive understanding of the nucleation and crystal growth kinetics, which are the key steps for perovskite film formation. Several thin-film crystallization techniques, including antisolvent, hot-casting, vacuum quenching, and gas blowing, are then summarized to distinguish their applications for scalable fabrication of perovskite thin films. In viewing the essential importance of the film morphology on device performance, several strategies including additive engineering, Lewis acid-based approach, solvent annealing, etc., which are capable of modulating the crystal morphology of perovskite film, are discussed. Finally, we summarize the recent progress in the scalable deposition of large-scale perovskite thin film for high-performance devices.

5.
Opt Express ; 27(21): 30102-30115, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684263

ABSTRACT

Passive radiative cooling, which pumps heat to outer space via thermal radiation, has been a promising energy free technology to maintain the earth surface temperature. Nighttime radiative cooling technology is quite mature, while daytime radiative cooling still poses many challenges due to the requirement of minimization of incident solar absorption and maximization of the mid-infrared emissivity in the atmospheric transparency windows. However, the mid-infrared emissivity efficiency of natural materials is usually poor, providing a low cooling efficiency and the realization of a high performance daytime radiative cooler is still quite challenge. In this work, we design and numerically investigate a three dimensional (3D) all-dielectric pyramidal multilayer metamaterial (PMM), which not only avoids the problem of high absorptivity loss of metal materials to solar, but also provide extremely high infrared absorptivity due to the attenuation effect of moth-eye structure and the electromagnetic resonant absorption in the metamaterial, achieving the purpose of both extremely low solar spectrum absorption and strong infrared emissivity within the atmospheric windows under the direct sunlight. Eventually, our designed cooler presents the potential to achieve a net radiative cooling power exceeding 156 W/m2 at ambient temperature of 300 K under direct solar irradiation, leading to a temperature reduction of 42.4°C. At nighttime, the net cooling power is more than 199 W/m2 at ambient temperature, resulting in a temperature reduction of 58.5°C. Even considering the non-radiative heat exchange conditions, this metamaterial cooler can still cool down 9.6°C at the daytime and 12.3°C at the nighttime respectively. Therefore, this work further promotes the development of all-dielectric metamaterial based passive radiative coolers and is of great significance for energy conservation.

6.
Adv Sci (Weinh) ; 6(17): 1901067, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31508290

ABSTRACT

Metal halide perovskite solar cells (PSCs) have raised considerable scientific interest due to their high cost-efficiency potential for photovoltaic solar energy conversion. As PSCs already are meeting the efficiency requirements for renewable power generation, more attention is given to further technological barriers as environmental stability and reliability. However, the most major obstacle limiting commercialization of PSCs is the lack of a reliable and scalable process for thin film production. Here, a generic crystallization strategy that allows the controlled growth of highly qualitative perovskite films via a one-step blade coating is reported. Through rational ink formulation in combination with a facile vacuum-assisted precrystallization strategy, it is possible to produce dense and uniform perovskite films with high crystallinity on large areas. The universal application of the method is demonstrated at the hand of three typical perovskite compositions with different band gaps. P-i-n perovskite solar cells show fill factors up to 80%, underpinning the statement of the importance of controlling crystallization dynamics. The methodology provides important progress toward the realization of cost-effective large-area perovskite solar cells for practical applications.

7.
ACS Nano ; 12(9): 9233-9239, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30169016

ABSTRACT

Planar optics constructed from subwavelength artificial atoms have been suggested as a route to the physical realization of steganography with controlled intrinsic redundancy at single-pixel levels. Unfortunately, two-dimensional geometries with uniform flat profiles offer limited structural redundancy and make it difficult to create advanced crypto-information in multiplexed physical divisions. Here, we reveal that splashing three-dimensional (3D) plasmonic nanovolcanoes could allow for a steganographic strategy in angular anisotropy, with high resolution, full coloration, and transient control of structural profiles. Highly reproducible 3D morphologies of volcanic nanosplashes are demonstrated by creating a standardized recipe of laser parameters. Such single nanovolcanoes can be well controlled individually at different splashing stages and thus provide a lithography-free fashion to access various spectral responses of angularly coordinated transverse and vertical modes, leading to the full-range coloration. This chip-scale demonstration of steganographic color images in angular anisotropy unfolds a long-ignored scheme for structured metasurfaces and thereby provides a paradigm for information security and anticounterfeiting.

8.
Sci Adv ; 2(3): e1501536, 2016 03.
Article in English | MEDLINE | ID: mdl-27051869

ABSTRACT

Topological insulators are a new class of quantum materials with metallic (edge) surface states and insulating bulk states. They demonstrate a variety of novel electronic and optical properties, which make them highly promising electronic, spintronic, and optoelectronic materials. We report on a novel conic plasmonic nanostructure that is made of bulk-insulating topological insulators and has an intrinsic core-shell formation. The insulating (dielectric) core of the nanocone displays an ultrahigh refractive index of up to 5.5 in the near-infrared frequency range. On the metallic shell, plasmonic response and strong backward light scattering were observed in the visible frequency range. Through integrating the nanocone arrays into a-Si thin film solar cells, up to 15% enhancement of light absorption was predicted in the ultraviolet and visible ranges. With these unique features, the intrinsically core-shell plasmonic nanostructure paves a new way for designing low-loss and high-performance visible to infrared optical devices.


Subject(s)
Nanostructures/chemistry , Refractometry , Surface Plasmon Resonance , Electronics , Light , Scattering, Radiation , Solar Energy
9.
Nanotechnology ; 27(19): 195401, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27040376

ABSTRACT

Enhancing the light absorption in microcrystalline silicon bottom cell of a silicon-based tandem solar cell for photocurrent matching holds the key to achieving the overall solar cell performance breakthroughs. Here, we present a concept for significantly improving the absorption of both subcells simultaneously by simply applying tailored metallic nanoparticles both on the top and at the rear surfaces of the solar cells. Significant light absorption enhancement as large as 56% has been achieved in the bottom subcells. More importantly the thickness of the microcrystalline layer can be reduced by 57% without compromising the optical performance of the tandem solar cell, providing a cost-effective strategy for high performance tandem solar cells.

10.
Sci Rep ; 6: 24972, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27113558

ABSTRACT

Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

11.
Nanomaterials (Basel) ; 6(6)2016 May 24.
Article in English | MEDLINE | ID: mdl-28335223

ABSTRACT

Plasmonic metal nanoparticles supporting localized surface plasmon resonances have attracted a great deal of interest in boosting the light absorption in solar cells. Among the various plasmonic materials, the aluminium nanoparticles recently have become a rising star due to their unique ultraviolet plasmonic resonances, low cost, earth-abundance and high compatibility with the complementary metal-oxide semiconductor (CMOS) manufacturing process. Here, we report some key factors that determine the light incoupling of aluminium nanoparticles located on the front side of silicon solar cells. We first numerically study the scattering and absorption properties of the aluminium nanoparticles and the influence of the nanoparticle shape, size, surface coverage and the spacing layer on the light incoupling using the finite difference time domain method. Then, we experimentally integrate 100-nm aluminium nanoparticles on the front side of silicon solar cells with varying silicon nitride thicknesses. This study provides the fundamental insights for designing aluminium nanoparticle-based light trapping on solar cells.

12.
Opt Express ; 23(24): A1700-6, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698816

ABSTRACT

Although perovskite materials have been widely investigated for thin-film photovoltaic devices due to the potential for high efficiency, their high toxicity has pressed the development of a solar cell structure of an ultra-thin absorber layer. But insufficient light absorption could be a result of ultra-thin perovskite films. In this paper, we propose a new nanoplasmonic solar cell that integrates metal nanoparticles at its rear/front surfaces of the perovskite layer. Plasmon-enhanced light scattering and near-field enhancement effects from lumpy sliver nanoparticles result in the photocurrent enhancement for a 50 nm thick absorber, which is higher than that for a 300 nm thick flat perovskite solar cell. We also predict the 4-fold photocurrent enhancement in an ultrathin perovskite solar cell with the absorber thickness of 10 nm. Our results pave a new way for ultrathin high-efficiency solar cells with either a lead-based or a lead-free perovskite absorption layer.

13.
Adv Mater ; 27(5): 849-55, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25363355

ABSTRACT

An innovative 1D material--graphenized carbon nanofiber--is designed and synthesized. The nanofiber exhibits superior light-scattering properties, ultralow absorption loss, and high electrical conductivity, and enables a wide range of applications. Simply integrating the nanofibers with the state-of-the-art silicon solar cells leads to a leaping efficiency boost of 3.8%, almost five times higher than the current world record.

14.
Nano Lett ; 12(5): 2187-92, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22300399

ABSTRACT

Recently plasmonic effects have gained tremendous interest in solar cell research because they are deemed to be able to dramatically boost the efficiency of thin-film solar cells. However, despite of the intensive efforts, the desired broadband enhancement, which is critical for real device performance improvement, has yet been achieved with simple fabrication and integration methods appreciated by the solar industry. We propose in this paper a novel idea of using nucleated silver nanoparticles to effectively scatter light in a broadband wavelength range to realize pronounced absorption enhancement in the silicon absorbing layer. Since it does not require critical patterning, experimentally these tailored nanoparticles were achieved by the simple, low-cost and upscalable wet chemical synthesis method and integrated before the back contact layer of the amorphous silicon thin-film solar cells. The solar cells incorporated with 200 nm nucleated silver nanoparticles at 10% coverage density clearly demonstrate a broadband absorption enhancement and significant superior performance including a 14.3% enhancement in the short-circuit photocurrent density and a 23% enhancement in the energy conversion efficiency, compared with the randomly textured reference cells without nanoparticles. Among the measured plasmonic solar cells the highest efficiency achieved was 8.1%. The significant enhancement is mainly attributed to the broadband light scattering arising from the integration of the tailored nucleated silver nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...