Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharm Sin B ; 13(8): 3444-3453, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37655324

ABSTRACT

Irinotecan is an anticancer topoisomerase I inhibitor that acts as a prodrug of the active metabolite, SN-38. Unfortunately, the limited utility of irinotecan is attributed to its pH-dependent stability, short half-life and dose-limiting toxicity. To address this problem, a novel trivalent PEGylated prodrug (PEG-[Irinotecan]3) has been synthesized and its full-profile pharmacokinetics, antitumor activity and toxicity compared with those of irinotecan. The results show that after intravenous administration to rats, PEG-[Irinotecan]3 undergoes stepwise loss of irinotecan to form PEG-[Irinotecan]3‒x (x = 1,2) and PEG-[linker] during which time the released irinotecan undergoes conversion to SN-38. As compared with conventional irinotecan, PEG-[Irinotecan]3 displays extended release of irinotecan and efficient formation of SN-38 with significantly improved AUC and half-life. In a colorectal cancer-bearing model in nude mice, the tumor concentrations of irinotecan and SN-38 produced by PEG-[Irinotecan]3 were respectively 86.2 and 2293 times higher at 48 h than produced by irinotecan. In summary, PEG-[Irinotecan]3 displays superior pharmacokinetic characteristics and antitumor activity with lower toxicity than irinotecan. This supports the view that PEG-[Irinotecan]3 is a superior anticancer drug to irinotecan and it has entered the phase II trial stage.

2.
Molecules ; 28(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375337

ABSTRACT

Polylactic acids (PLAs) are synthetic polymers composed of repeating lactic acid subunits. For their good biocompatibility, PLAs have been approved and widely applied as pharmaceutical excipients and scaffold materials. Liquid chromatography-tandem mass spectrometry is a powerful analytical tool not only for pharmaceutical ingredients but also for pharmaceutical excipients. However, the characterization of PLAs presents particular problems for mass spectrometry techniques. In addition to their high molecular weights and wide polydispersity, multiple charging and various adductions are intrinsic features of electrospray ionization. In the present study, a strategy combining of differential mobility spectrometry (DMS), multiple ion monitoring (MIM) and in-source collision-induced dissociation (in source-CID) has been developed and applied to the characterization and quantitation of PLAs in rat plasma. First, PLAs will be fragmented into characteristic fragment ions under high declustering potential in the ionization source. The specific fragment ions are then screened twice by quadrupoles to ensure a high signal intensity and low interference for mass spectrometry detection. Subsequently, DMS technique has been applied to further reduce the background noise. The appropriately chosen surrogate specific precursor ions could be utilized for the qualitative and quantitative analysis of PLAs, which provided results with the advantages of low endogenous interference, sufficient sensitivity and selectivity for bioassay. The linearity of the method was evaluated over the concentration range 3-100 µg/mL (r2 = 0.996) for PLA 20,000. The LC-DMS-MIM coupled with in source-CID strategy may contribute to the pharmaceutical studies of PLAs and the possible prospects of other pharmaceutical excipients.


Subject(s)
Polymers , Tandem Mass Spectrometry , Rats , Animals , Tandem Mass Spectrometry/methods , Excipients/chemistry , Ions/chemistry , Spectrum Analysis , Spectrometry, Mass, Electrospray Ionization
3.
Eur J Pharm Sci ; 172: 106157, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35257876

ABSTRACT

BACKGROUND AND PURPOSE: Despite being a first-line clinical drug, thienopyridines have many unsatisfactory aspects, including the low bioavailability of clopidogrel(CLP) and the high bleeding risk of prasugrel. We synthesized deuterium clopidogrel(D-CL, patented in China) to alleviate the deficiency of CLP in clinical, such as a slow onset, a greater influence of gene polymorphism, and a high frequency of drug-drug interaction. EXPERIMENTAL APPROACH: Molecular docking was used to analyze the affinity between D-CL and the P2Y12 receptor. The levels of active metabolites of D-CL were detected using HPLC/MS-MS and the activities of main metabolic enzymes were analyzed; Subsequently, platelet aggregation function, thrombus model were used to evaluate the pharmacodynamics of D-CL. Finally, the safety of D-CL were evaluated through examination of blood routine, PT, APTT, bleeding time, serological tests, liver pathological biopsy, liver cell apoptosis and detection of apoptosis-related proteins. KEY RESULTS: The introduction of deuterium made the binding of CLP to P2Y12 receptor more stable, improved the concentration of active metabolites, and substantially reduced the inhibition of major metabolic enzymes, including CYP2B6, CYP2C9, and CYP2C19, thereby, exerting better antiplatelet effects without increasing the risk of bleeding, along with a concomitant decrease in the apoptosis of hepatocytes.


Subject(s)
Hydrogen , Platelet Aggregation Inhibitors , Clopidogrel/pharmacology , Deuterium/pharmacology , Formic Acid Esters , Hydrogen/pharmacology , Molecular Docking Simulation , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology , Thiophenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...