Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D285-D292, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897340

ABSTRACT

Chromatin accessibility profiles at single cell resolution can reveal cell type-specific regulatory programs, help dissect highly specialized cell functions and trace cell origin and evolution. Accurate cell type assignment is critical for effectively gaining biological and pathological insights, but is difficult in scATAC-seq. Hence, by extensively reviewing the literature, we designed scATAC-Ref (https://bio.liclab.net/scATAC-Ref/), a manually curated scATAC-seq database aimed at providing a comprehensive, high-quality source of chromatin accessibility profiles with known cell labels across broad cell types. Currently, scATAC-Ref comprises 1 694 372 cells with known cell labels, across various biological conditions, >400 cell/tissue types and five species. We used uniform system environment and software parameters to perform comprehensive downstream analysis on these chromatin accessibility profiles with known labels, including gene activity score, TF enrichment score, differential chromatin accessibility regions, pathway/GO term enrichment analysis and co-accessibility interactions. The scATAC-Ref also provided a user-friendly interface to query, browse and visualize cell types of interest, thereby providing a valuable resource for exploring epigenetic regulation in different tissues and cell types.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Chromatin , Databases, Genetic , Single-Cell Analysis , Chromatin/genetics , Epigenesis, Genetic , Humans , Animals
2.
Angew Chem Int Ed Engl ; 51(42): 10570-5, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23002009

ABSTRACT

Lightening organelles: A femtosecond laser can excite multiphoton-induced luminescence of graphene oxide nanoparticles. The flow, distributions, and clearance of intravenously injected GO-PEG nanoparticles in the blood vessel of mice could be observed clearly by two-photon imaging. The 3D distribution of microinjected GO-PEG nanoparticles in a mice brain could also be reconstructed with two-photon microscopy.


Subject(s)
Graphite/chemistry , Nanoparticles/chemistry , Oxides/chemistry , Animals , Diagnostic Imaging/methods , Fluorescence , Luminescent Measurements/methods , Mice , Microscopy, Confocal/methods , Photons , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...