Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(5): 5542-5556, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31939277

ABSTRACT

An efficient and available material for promoting skin regeneration is of great importance for public health, but it remains an elusive goal. Inspired by fetal scarless wound healing, we develop a wearable biomimetic film (WBMF) composed of hyaluronan (HA), vitamin E (VE), dopamine (DA), and ß-cyclodextrin (ß-CD) that mimics the fetal context (FC) and fetal extracellular matrix (ECM) around the wound bed for dermal regeneration. First, the WBMF creates the FC of sterility, hypoxia, persistent moisture, and no secondary insults for wounds as the result of its seamless adhesion to the skin, optimum stress-stretch and high-cycle fatigue resistance matching the anisotropic tension of the skin, and water-triggered self-healing behavior. Thus, the WBMF modulates the early wound situation to minimize inflammatory response. In the meantime, the WBMF mimics the critical biological function of fetal ECM, inducing fibroblast migration, suppressing the overexpression of transforming growth factor ß1, and mediating collagen synthesis, distribution, and reestablishment. As a result, the WBMF accelerates wound healing and gains a normal dermal collagen architecture, thereby restoring scarless appearance. Overall, the WBMF provides a new paradigm for promoting skin wound healing and may find broad utility for the field of regenerative medicine.


Subject(s)
Biomimetic Materials/chemistry , Models, Biological , Skin , Wound Healing/physiology , Animals , Elasticity , Extracellular Matrix/chemistry , Female , Hydrophobic and Hydrophilic Interactions , Mice , Mice, Inbred BALB C , Skin/injuries , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...