Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3438, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653960

ABSTRACT

PbZrO3 has been broadly considered as a prototypical antiferroelectric material for high-power energy storage. A recent theoretical study suggests that the ground state of PbZrO3 is threefold-modulated ferrielectric, which challenges the generally accepted antiferroelectric configuration. However, such a novel ferrielectric phase was predicted only to be accessible at low temperatures. Here, we successfully achieve the room-temperature construction of the strongly competing ferrielectric and antiferroelectric state by strain-mediated phase separation in PbZrO3/SrTiO3 thin film. We demonstrate that the phase separation occurs spontaneously in quasi-periodic stripe-like patterns under a compressive misfit strain and can be tailored by varying the film thickness. The ferrielectric phase strikingly exhibitsa threefold modulation period with a nearly up-up-down configuration, which could be stabilized and manipulated by the formation and evolution of interfacial defects under applied strain. The present results construct a fertile ground for further exploring the physical properties and applications based on the novel ferrielectric phase.

2.
Sci Adv ; 8(14): eabl9088, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35385309

ABSTRACT

The devil's staircase, describing step-like function for two competing frequencies, is well known over a wide range of dynamic systems including Huyghens' clocks, Josephson junction, and chemical reaction. In condensed matter physics, the devil's staircase has been observed in spatially modulated structures, such as magnetic ordering. It draws widespread attentions because it plays a crucial role in the fascinating phenomena including phase-locking behaviors, commensurate-incommensurate phase transition, and spin-valve effect. Here, we report the observation of polymorphic phase transitions consisting of several steps in PbZrO3-based system-namely, electric devil's staircase-originated from competing ferroelectric and antiferroelectric interactions. We fully characterize a specific electric dipole configuration by decomposing this competitive interaction in terms of basic structure and modulation function. Of particular interest is that the occurrence of many degenerate electric dipole configurations in devil's staircase enables superior energy storage performance. These observations are of great significance for exploring more substantive magnetic-electric correspondence and engineering practical high-power antiferroelectric capacitors.

3.
Nat Commun ; 13(1): 1390, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296672

ABSTRACT

Phase boundary provides a fertile ground for exploring emergent phenomena and understanding order parameters couplings in condensed-matter physics. In Pb(Zr1-xTix)O3, there are two types of composition-dependent phase boundary with both technological and scientific importance, i.e. morphotropic phase boundary (MPB) separating polar regimes into different symmetry and ferroelectric/antiferroelectric (FE/AFE) phase boundary dividing polar and antipolar dipole configurations. In contrast with extensive studies on MPB, FE/AFE phase boundary is far less explored. Here, we apply atomic-scale imaging and Rietveld refinement to directly demonstrate the intermediate phase at FE/AFE phase boundary exhibits a rare multipolar Pb-cations ordering, i.e. coexistence of antipolar or polar displacement, which manifests itself in both periodically gradient lattice spacing and anomalous initial hysteresis loop. In-situ electron/neutron diffraction reveals that the same parent intermediate phase can transform into either FE or AFE state depending on suppression of antipolar or polar displacement, coupling with the evolution of long-/short-range oxygen octahedra tilts. First-principle calculations further show that the transition between AFE and FE phase can occur in a low-energy pathway via the intermediate phase. These findings enrich the structural understanding of FE/AFE phase boundary in perovskite oxides.

SELECTION OF CITATIONS
SEARCH DETAIL
...