Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36833787

ABSTRACT

Emerging contaminants, which mainly exist as organic pollutants and pose adverse biological effects, could be removed using photocatalytic degradation, resulting in a low-cost and environmentally friendly solution. Herein, BiVO4 nanoparticles with different morphologies and photocatalytic performances were synthesized by hydrothermal treatment at different residence times. The XRD and SEM results indicate that the crystal phase of BiVO4 gradually transformed from a single tetragonal phase to a single monoclinic crystal phase as the hydrothermal time increased, and with the extension of the hydrothermal time, the morphology of BiVO4 nanoparticles gradually differentiated from a smooth spherical shape to flower-like shapes composed of polyhedrons; the size of the crystals also increased accordingly. Methylene blue (MB), used as a probe of organic pollutants, was degraded under visible light irradiation by all BiVO4 samples to investigate its photocatalytic activities. The experimental results show that the longer the hydrothermal time, the better the photocatalytic performance. The optimum hydrothermal time was 24 h, at which the sample showed the highest photocatalytic activity for MB degradation. This work shows a convenient strategy for control of the crystal phase of BiVO4-based photocatalysts based on the understanding of the crystal morphology evolution mechanism, which will benefit the researchers in designing new BiVO4-based photocatalysts with high efficiency for emerging contaminants' degradation.


Subject(s)
Environmental Pollutants , Methylene Blue , Methylene Blue/chemistry , Bismuth/chemistry , Vanadates/chemistry , Light , Catalysis
2.
R Soc Open Sci ; 5(8): 180752, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30225069

ABSTRACT

A heterojunction catalyst, BiVO4/P25, was successfully fabricated using a one-step hydrothermal method. The prepared composite was characterized using XRD, XPS, Raman, FT-IR, UV-vis, SEM, HRTEM and PL. The HRTEM pictures revealed that the heterostructured composite was composed of BiVO4 and P25, and from the pictures of SEM we could see the P25 nanoparticles assembling on the surface of flower-shaped BiVO4 nanostructures. The XPS spectra showed that the prepared catalyst consisted of Bi, V, O, Ti and C. The photocatalytic activity of BiVO4/P25 was evaluated by degraded methyl blue (MB) and tetracycline under visible light illumination (λ > 420 nm), and the results showed that BiVO4/P25 composite has a better photocatalytic performance compared with pure BiVO4 and the most active c-BiVO4/P25 sample showed enough catalytic stability after three successive reuses for MB photodegradation. The enhanced photocatalytic performance could mainly be attributed to the better optical absorption ability and good absorption ability of organic contaminants.

SELECTION OF CITATIONS
SEARCH DETAIL
...