Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915717

ABSTRACT

Striatonigral neurons, known to promote locomotion, reside in both the patch and matrix compartments of the dorsal striatum. However, their compartment-specific contributions to locomotion remain largely unexplored. Using molecular identifier Kremen1 and Calb1 , we showed in mouse models that patch and matrix striatonigral neurons exert opposite influences on locomotion. Matrix striatonigral neurons reduced their activity before the cessation of self-paced locomotion, while patch striatonigral neuronal activity increased, suggesting an inhibitory function. Indeed, optogenetic activation of patch striatonigral neurons suppressed ongoing locomotion with reduced striatal dopamine release, contrasting with the locomotion-promoting effect of matrix striatonigral neurons, which showed an initial increase in dopamine release. Furthermore, genetic deletion of the GABA-B receptor in Aldehyde dehydrogenase 1A1-positive (ALDH1A1 + ) nigrostriatal dopaminergic neurons completely abolished the locomotion-suppressing effect of patch striatonigral neurons. Our findings unravel a compartment-specific mechanism governing locomotion in the dorsal striatum, where patch striatonigral neurons suppress locomotion by inhibiting ALDH1A1 + nigrostriatal dopaminergic neurons.

2.
Front Med ; 18(3): 446-464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769282

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects both cognition and non-cognition functions. The disease follows a continuum, starting with preclinical stages, progressing to mild cognitive and behavioral impairment, ultimately leading to dementia. Early detection of AD is crucial for better diagnosis and more effective treatment. However, the current AD diagnostic tests of biomarkers using cerebrospinal fluid and/or brain imaging are invasive or expensive, and mostly are still not able to detect early disease state. Consequently, there is an urgent need to develop new diagnostic techniques with higher sensitivity and specificity during the preclinical stages of AD. Various non-cognitive manifestations, including behavioral abnormalities, sleep disturbances, sensory dysfunctions, and physical changes, have been observed in the preclinical AD stage before occurrence of notable cognitive decline. Recent research advances have identified several biofluid biomarkers as early indicators of AD. This review focuses on these non-cognitive changes and newly discovered biomarkers in AD, specifically addressing the preclinical stages of the disease. Furthermore, it is of importance to explore the potential for developing a predictive system or network to forecast disease onset and progression at the early stage of AD.


Subject(s)
Alzheimer Disease , Biomarkers , Early Diagnosis , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Humans , Biomarkers/cerebrospinal fluid , Disease Progression , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/cerebrospinal fluid , Brain/diagnostic imaging
3.
Res Sq ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37292937

ABSTRACT

Background: Although WD repeats domain 45 (WDR45) mutations have been linked to ß-propeller protein-associated neurodegeneration (BPAN), the precise molecular and cellular mechanisms behind this disease remain elusive. This study aims to shed light on the effects of WDR45-deficiency on neurodegeneration, specifically axonal degeneration, within the midbrain dopaminergic (DAergic) system. By examining pathological and molecular alterations, we hope to better understand the disease process. Methods: To investigate the effects of WDR45 dysfunction on mouse behaviors and DAergic neurons, we developed a mouse model in which WDR45 was conditionally knocked out in midbrain DAergic neurons (WDR45cKO). Through a longitudinal study, we assessed alterations in mouse behavior using open field, rotarod, Y-maze, and 3-chamber social approach tests. To examine the pathological changes in DAergic neuron soma and axons, we utilized a combination of immunofluorescence staining and transmission electron microscopy. Additionally, we performed proteomic analyses of the striatum to identify the molecules and processes involved in striatal pathology. Results: Our study of WDR45cKO mice revealed a range of deficits, including impaired motor function, emotional instability, and memory loss, coinciding with the profound loss of midbrain DAergic neurons. Prior to neuronal loss, we observed massive axonal enlargements in both the dorsal and ventral striatum. These enlargements were characterized by the accumulation of extensively fragmented tubular endoplasmic reticulum (ER), a hallmark of axonal degeneration. Additionally, we found that WDR45cKO mice exhibited disrupted autophagic flux. Proteomic analysis of the striatum in these mice showed that many differentially expressed proteins (DEPs) were enriched in amino acid, lipid, and tricarboxylic acid metabolisms. Of note, we observed significant alterations in the expression of genes encoding DEPs that regulate phospholipids catabolic and biosynthetic processes, such as lysophosphatidylcholine acyltransferase 1, ethanolamine-phosphate phospho-lyase, and abhydrolase domain containing 4, N-acyl phospholipase B. These findings suggest a possible link between phospholipid metabolism and striatal axon degeneration. Conclusions: In this study, we have uncovered the molecular mechanisms underlying the contribution of WDR45-deficiency to axonal degeneration, revealing intricate relationships between tubular ER dysfunction, phospholipid metabolism, BPAN and other neurodegenerative diseases. These findings significantly advance our understanding of the fundamental molecular mechanisms driving neurodegeneration and may provide a foundation for developing novel, mechanistically-based therapeutic interventions.

4.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239960

ABSTRACT

The degeneration of midbrain dopaminergic (mDA) neurons, particularly in the substantia nigra pars compacta (SNc), is one of the most prominent pathological hallmarks of Parkinson's disease (PD). To uncover the pathogenic mechanisms of mDA neuronal death during PD may provide therapeutic targets to prevent mDA neuronal loss and slow down the disease's progression. Paired-like homeodomain transcription factor 3 (Pitx3) is selectively expressed in the mDA neurons as early as embryonic day 11.5 and plays a critical role in mDA neuron terminal differentiation and subset specification. Moreover, Pitx3-deficient mice exhibit some canonical PD-related features, including the profound loss of SNc mDA neurons, a dramatic decrease in striatal dopamine (DA) levels, and motor abnormalities. However, the precise role of Pitx3 in progressive PD and how this gene contributes to mDA neuronal specification during early stages remains unclear. In this review, we updated the latest findings on Pitx3 by summarizing the crosstalk between Pitx3 and its associated transcription factors in mDA neuron development. We further explored the potential benefits of Pitx3 as a therapeutic target for PD in the future. To better understand the transcriptional network of Pitx3 in mDA neuron development may provide insights into Pitx3-related clinical drug-targeting research and therapeutic approaches.


Subject(s)
Dopaminergic Neurons , Homeodomain Proteins , Parkinson Disease , Transcription Factors , Animals , Mice , Dopamine , Dopaminergic Neurons/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mesencephalon/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
5.
NPJ Parkinsons Dis ; 9(1): 35, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36879021

ABSTRACT

Multiple missense mutations in p150Glued are linked to Perry syndrome (PS), a rare neurodegenerative disease pathologically characterized by loss of nigral dopaminergic (DAergic) neurons. Here we generated p150Glued conditional knockout (cKO) mice by deleting p150Glued in midbrain DAergic neurons. The young cKO mice displayed impaired motor coordination, dystrophic DAergic dendrites, swollen axon terminals, reduced striatal dopamine transporter (DAT), and dysregulated dopamine transmission. The aged cKO mice showed loss of DAergic neurons and axons, somatic accumulation of α-synuclein, and astrogliosis. Further mechanistic studies revealed that p150Glued deficiency in DAergic neurons led to the reorganization of endoplasmic reticulum (ER) in dystrophic dendrites, upregulation of ER tubule-shaping protein reticulon 3, accumulation of DAT in reorganized ERs, dysfunction of COPII-mediated ER export, activation of unfolded protein response, and exacerbation of ER stress-induced cell death. Our findings demonstrate the importance of p150Glued in controlling the structure and function of ER, which is critical for the survival and function of midbrain DAergic neurons in PS.

6.
Nat Commun ; 13(1): 3490, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35715418

ABSTRACT

Endocannabinoid (eCB), 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain, regulates diverse neural functions. Here we linked multiple homozygous loss-of-function mutations in 2-AG synthase diacylglycerol lipase ß (DAGLB) to an early onset autosomal recessive Parkinsonism. DAGLB is the main 2-AG synthase in human and mouse substantia nigra (SN) dopaminergic neurons (DANs). In mice, the SN 2-AG levels were markedly correlated with motor performance during locomotor skill acquisition. Genetic knockdown of Daglb in nigral DANs substantially reduced SN 2-AG levels and impaired locomotor skill learning, particularly the across-session learning. Conversely, pharmacological inhibition of 2-AG degradation increased nigral 2-AG levels, DAN activity and dopamine release and rescued the locomotor skill learning deficits. Together, we demonstrate that DAGLB-deficiency contributes to the pathogenesis of Parkinsonism, reveal the importance of DAGLB-mediated 2-AG biosynthesis in nigral DANs in regulating neuronal activity and dopamine release, and suggest potential benefits of 2-AG augmentation in alleviating Parkinsonism.


Subject(s)
Dopaminergic Neurons , Lipoprotein Lipase/metabolism , Parkinsonian Disorders , Animals , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Endocannabinoids/metabolism , Mice , Parkinsonian Disorders/metabolism , Substantia Nigra/metabolism
7.
PLoS One ; 17(2): e0255710, 2022.
Article in English | MEDLINE | ID: mdl-35113871

ABSTRACT

Modestly increased expression of transactive response DNA binding protein (TDP-43) gene have been reported in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neuromuscular diseases. However, whether this modest elevation triggers neurodegeneration is not known. Although high levels of TDP-43 overexpression have been modeled in mice and shown to cause early death, models with low-level overexpression that mimic the human condition have not been established. In this study, transgenic mice overexpressing wild type TDP-43 at less than 60% above the endogenous CNS levels were constructed, and their phenotypes analyzed by a variety of techniques, including biochemical, molecular, histological, behavioral techniques and electromyography. The TDP-43 transgene was expressed in neurons, astrocytes, and oligodendrocytes in the cortex and predominantly in astrocytes and oligodendrocytes in the spinal cord. The mice developed a reproducible progressive weakness ending in paralysis in mid-life. Detailed analysis showed ~30% loss of large pyramidal neurons in the layer V motor cortex; in the spinal cord, severe demyelination was accompanied by oligodendrocyte injury, protein aggregation, astrogliosis and microgliosis, and elevation of neuroinflammation. Surprisingly, there was no loss of lower motor neurons in the lumbar spinal cord despite the complete paralysis of the hindlimbs. However, denervation was detected at the neuromuscular junction. These results demonstrate that low-level TDP-43 overexpression can cause diverse aspects of ALS, including late-onset and progressive motor dysfunction, neuroinflammation, and neurodegeneration. Our findings suggest that persistent modest elevations in TDP-43 expression can lead to ALS and other neurological disorders involving TDP-43 proteinopathy. Because of the predictable and progressive clinical paralytic phenotype, this transgenic mouse model will be useful in preclinical trial of therapeutics targeting neurological disorders associated with elevated levels of TDP-43.


Subject(s)
Amyotrophic Lateral Sclerosis
8.
Free Radic Biol Med ; 181: 52-61, 2022 03.
Article in English | MEDLINE | ID: mdl-35114355

ABSTRACT

Mutations in Cu/Zn-superoxide dismutase 1 (SOD1) are linked to amyotrophic lateral sclerosis (ALS). Using a line of ALS-related mutant human SOD1 (hSOD1) transgenic Caenorhabditis elegans, we determined the effects of metformin on the progression of ALS-like pathological abnormalities. We found that metformin significantly extended the lifespan, improved motor performance, and enhanced antioxidant activity of mutant worms. We further showed that metformin enhanced expression of lgg-1, daf-16, skn-1 and other genes known to regulate autophagy, longevity and oxidative stress in hSOD1 transgenic worms. Accordingly, overexpression of lgg-1 or daf-16 attenuated the aging and pathological abnormalities of mutant human SOD1 worms, while genetic deletion of lgg-1 or daf-16 abolished the beneficial effects of metformin. Collectively, we demonstrate that metformin protects against mutant SOD1-induced cytotoxicity in part through enhancement of autophagy and extends lifespan through daf-16 pathway. Our findings suggest that metformin could be further explored as a potential therapeutic agent in treating ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Autophagy , Caenorhabditis elegans/metabolism , Disease Models, Animal , Longevity/genetics , Mice , Mice, Transgenic , Motor Neurons/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
9.
Cell Death Dis ; 12(11): 1008, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707106

ABSTRACT

Pituitary homeobox 3 (Pitx3) is required for the terminal differentiation of nigrostriatal dopaminergic neurons during neuronal development. However, whether Pitx3 contributes to the normal physiological function and cell-type identity of adult neurons remains unknown. To explore the role of Pitx3 in maintaining mature neurons, we selectively deleted Pitx3 in the mesodiencephalic dopaminergic (mdDA) neurons of Pitx3fl/fl/DATCreERT2 bigenic mice using a tamoxifen inducible CreERT2/loxp gene-targeting system. Pitx3fl/fl/DATCreERT2 mice developed age-dependent progressive motor deficits, concomitant with a rapid reduction of striatal dopamine (DA) content and a profound loss of mdDA neurons in the substantia nigra pars compacta (SNc) but not in the adjacent ventral tegmental area (VTA), recapitulating the canonical neuropathological features of Parkinson's disease (PD). Mechanistic studies showed that Pitx3-deficiency significantly increased the number of cleaved caspase-3+ cells in SNc, which likely underwent neurodegeneration. Meanwhile, the vulnerability of SNc mdDA neurons was increased in Pitx3fl/fl/DATCreERT2 mice, as indicated by an early decline in glial cell line-derived neurotrophic factor (GDNF) and aldehyde dehydrogenase 1a1 (Aldh1a1) levels. Noticeably, somatic accumulation of α-synuclein (α-syn) was also significantly increased in the Pitx3-deficient neurons. Together, our data demonstrate that the loss of Pitx3 in fully differentiated mdDA neurons results in progressive neurodegeneration, indicating the importance of the Pitx3 gene in adult neuronal survival. Our findings also suggest that distinct Pitx3-dependent pathways exist in SNc and VTA mdDA neurons, correlating with the differential vulnerability of SNc and VTA mdDA neurons in the absence of Pitx3.


Subject(s)
Aging/genetics , Dopaminergic Neurons/metabolism , Homeodomain Proteins/metabolism , Neurogenesis/genetics , Transcription Factors/metabolism , Animals , Cell Differentiation , Mice
10.
Article in English | MEDLINE | ID: mdl-34532720

ABSTRACT

Parkinson's disease (PD), the most common degenerative movement disorder, is clinically manifested with various motor and non-motor symptoms. Degeneration of midbrain substantia nigra pas compacta (SNc) dopaminergic neurons (DANs) is generally attributed to the motor syndrome. The underlying neuronal mechanisms of non-motor syndrome are largely unexplored. Besides SNc, midbrain ventral tegmental area (VTA) DANs also produce and release dopamine and modulate movement, reward, motivation, and memory. Degeneration of VTA DANs also occurs in postmortem brains of PD patients, implying an involvement of VTA DANs in PD-associated non-motor symptoms. However, it remains to be established that there is a distinct segregation of different SNc and VTA DAN subtypes in regulating different motor and non-motor functions, and that different DAN subpopulations are differentially affected by normal ageing or PD. Traditionally, the distinction among different DAN subtypes was mainly based on the location of cell bodies and axon terminals. With the recent advance of single cell RNA sequencing technology, DANs can be readily classified based on unique gene expression profiles. A combination of specific anatomic and molecular markers shows great promise to facilitate the identification of DAN subpopulations corresponding to different behavior modules under normal and disease conditions. In this review, we first summarize the recent progress in characterizing genetically, anatomically, and functionally diverse midbrain DAN subtypes. Then, we provide perspectives on how the preclinical research on the connectivity and functionality of DAN subpopulations improves our current understanding of cell-type and circuit specific mechanisms of the disease, which could be critically informative for designing new mechanistic treatments.

11.
Front Neural Circuits ; 15: 644776, 2021.
Article in English | MEDLINE | ID: mdl-34079441

ABSTRACT

Dopamine is an important chemical messenger in the brain, which modulates movement, reward, motivation, and memory. Different populations of neurons can produce and release dopamine in the brain and regulate different behaviors. Here we focus our discussion on a small but distinct group of dopamine-producing neurons, which display the most profound loss in the ventral substantia nigra pas compacta of patients with Parkinson's disease. This group of dopaminergic neurons can be readily identified by a selective expression of aldehyde dehydrogenase 1A1 (ALDH1A1) and accounts for 70% of total nigrostriatal dopaminergic neurons in both human and mouse brains. Recently, we presented the first whole-brain circuit map of these ALDH1A1-positive dopaminergic neurons and reveal an essential physiological function of these neurons in regulating the vigor of movement during the acquisition of motor skills. In this review, we first summarize previous findings of ALDH1A1-positive nigrostriatal dopaminergic neurons and their connectivity and functionality, and then provide perspectives on how the activity of ALDH1A1-positive nigrostriatal dopaminergic neurons is regulated through integrating diverse presynaptic inputs and its implications for potential Parkinson's disease treatment.


Subject(s)
Dopaminergic Neurons , Parkinson Disease , Aldehyde Dehydrogenase , Aldehyde Dehydrogenase 1 Family , Animals , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Humans , Mice , Retinal Dehydrogenase/metabolism , Substantia Nigra
12.
Front Neural Circuits ; 15: 645287, 2021.
Article in English | MEDLINE | ID: mdl-33737869

ABSTRACT

The globus pallidus externa (GPe) functions as a central hub in the basal ganglia for processing motor and non-motor information through the creation of complex connections with the other basal ganglia nuclei and brain regions. Recently, with the adoption of sophisticated genetic tools, substantial advances have been made in understanding the distinct molecular, anatomical, electrophysiological, and functional properties of GPe neurons and non-neuronal cells. Impairments in dopamine transmission in the basal ganglia contribute to Parkinson's disease (PD), the most common movement disorder that severely affects the patients' life quality. Altered GPe neuron activity and synaptic connections have also been found in both PD patients and pre-clinical models. In this review, we will summarize the main findings on the composition, connectivity and functionality of different GPe cell populations and the potential GPe-related mechanisms of PD symptoms to better understand the cell type and circuit-specific roles of GPe in both normal and PD conditions.


Subject(s)
Globus Pallidus , Parkinson Disease , Basal Ganglia , Dopamine , Humans , Neurons
13.
Cell Death Dis ; 12(1): 116, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483473

ABSTRACT

Vacuole membrane protein 1 (VMP1), the endoplasmic reticulum (ER)-localized autophagy protein, plays a key role during the autophagy process in mammalian cells. To study the impact of VMP1-deficiency on midbrain dopaminergic (mDAergic) neurons, we selectively deleted VMP1 in the mDAergic neurons of VMP1fl/fl/DATCreERT2 bigenic mice using a tamoxifen-inducible CreERT2/loxp gene targeting system. The VMP1fl/fl/DATCreERT2 mice developed progressive motor deficits, concomitant with a profound loss of mDAergic neurons in the substantia nigra pars compacta (SNc) and a high presynaptic accumulation of α-synuclein (α-syn) in the enlarged terminals. Mechanistic studies showed that VMP1 deficiency in the mDAergic neurons led to the increased number of microtubule-associated protein 1 light chain 3-labeled (LC3) puncta and the accumulation of sequestosome 1/p62 aggregates in the SNc neurons, suggesting the impairment of autophagic flux in these neurons. Furthermore, VMP1 deficiency resulted in multiple cellular abnormalities, including large vacuolar-like structures (LVSs), damaged mitochondria, swollen ER, and the accumulation of ubiquitin+ aggregates. Together, our studies reveal a previously unknown role of VMP1 in modulating neuronal survival and maintaining axonal homeostasis, which suggests that VMP1 deficiency might contribute to mDAergic neurodegeneration via the autophagy pathway.


Subject(s)
Axons/pathology , Membrane Proteins/therapeutic use , Nerve Degeneration/prevention & control , Animals , Autophagy , Homeostasis , Membrane Proteins/pharmacology , Mice , Nerve Degeneration/pathology
14.
FASEB J ; 34(9): 12239-12254, 2020 09.
Article in English | MEDLINE | ID: mdl-33000527

ABSTRACT

α-Synuclein (α-syn)-induced neurotoxicity has been generally accepted as a key step in the pathogenesis of Parkinson's disease (PD). Microtubule-associated protein tau, which is considered second only to α-syn, has been repeatedly linked with PD in association studies. However, the underlying interaction between these two PD-related proteins in vivo remains unclear. To investigate how the expression of tau affects α-syn-induced neurodegeneration in vivo, we generated triple transgenic mice that overexpressed α-syn A53T mutation in the midbrain dopaminergic neurons (mDANs) with different expression levels of tau. Here, we found that tau had no significant effect on the A53T α-syn-mediated mDANs degeneration. However, tau knockout could modestly promote the formation of α-syn aggregates, accelerate the severe and progressive degeneration of parvalbumin-positive (PV+) neurons in substantia nigra pars reticulata (SNR), accompanied with anxiety-like behavior in aged PD-related α-syn A53T mice. The mechanisms may be associated with A53T α-syn-mediated specifically successive impairment of N-methyl-d-aspartate receptor subunit 2B (NR2B), postsynaptic density-95 (PSD-95) and microtubule-associated protein 1A (MAP1A) in PV+ neurons. Our study indicates that MAP1A may play a beneficial role in preserving the survival of PV+ neurons, and that inhibition of the impairment of NR2B/PSD-95/MAP1A pathway, may be a novel and preferential option to ameliorate α-syn-induced neurodegeneration.


Subject(s)
Mutation , Nerve Degeneration , Parkinson Disease/etiology , Parvalbumins/analysis , Substantia Nigra/pathology , alpha-Synuclein/genetics , tau Proteins/physiology , Animals , Disks Large Homolog 4 Protein/physiology , Homeodomain Proteins/physiology , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/physiology , Parkinson Disease/pathology , Peptide Fragments/physiology , Protein Aggregates , Receptors, N-Methyl-D-Aspartate/physiology , Transcription Factors/physiology , alpha-Synuclein/physiology , tau Proteins/chemistry , tau Proteins/genetics
15.
Front Mol Neurosci ; 13: 64, 2020.
Article in English | MEDLINE | ID: mdl-32477062

ABSTRACT

The nuclear receptor-related 1 protein (Nurr1) is critical for the development and survival of midbrain dopamine neurons that are predominantly affected and progressively degenerated in Parkinson's disease (PD). The expression level of Nurr1 has been proposed to be modulated by α-synuclein (α-SYN), an important pathological hallmark of PD. However, the underlying molecular mechanisms of α-SYN-Nurr1 interaction are still rarely explored. In this study, we investigated the effect and mechanism of α-SYN on the transcription level of Nurr1. Our results showed that overexpression of α-SYN (WT or A53T) reduced Nurr1 and its downstream gene expressions. α-SYN neither affected the mRNA stability nor bound with the promoter of Nurr1, but modulated the transcription activity of Nurr1 promoter region ranging from -605 bp to -418 bp, which contains the binding site of nuclear factor-kappa B (NF-κB). Moreover, overexpression of α-SYN (WT or A53T) down-regulated NF-κB expression level, thereby inhibiting the transcription factor activity of NF-κB and decreasing the binding quantity of NF-κB with Nurr1 promoter. These findings may give us new insights to better understand the molecular mechanisms underlying the α-SYN-regulated Nurr1 function, which may fascinate the investigation of dopamine neuron degeneration in PD pathogenesis.

16.
Glia ; 68(10): 2057-2069, 2020 10.
Article in English | MEDLINE | ID: mdl-32181533

ABSTRACT

Nuclear receptor-related 1 protein (NURR1) is essential for the development and maintenance of midbrain dopaminergic (DAergic) neurons. NURR1 also protects DAergic neurons against neuroinflammation. However, it remains to be determined to what extent does NURR1 exerts its protective function through acting autonomously in the microglia. Using Cre/lox gene targeting system, we deleted Nurr1 in the microglia of Nurr1Cd11bcre conditional knockout (cKO) mice. The Nurr1Cd11bcre cKO mice displayed age-dependent motor abnormalities and increased microglial activation, but with no obvious DAergic neurodegeneration. To boost the inflammatory injury, we systemically administered endotoxin lipopolysaccharide (LPS) to Nurr1Cd11bcre mice. As expected, LPS treatment exacerbated the motor phenotypes and inflammatory reactions in Nurr1Cd11bcre cKO mice. More importantly, LPS administration caused DAergic neuron loss and α-synuclein aggregation, two pathological hallmarks of Parkinson's disease (PD). Therefore, our findings provide in vivo evidence supporting a critical protective role of NURR1 in the microglia against inflammation-induced degeneration of DAergic neurons in PD.


Subject(s)
Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Nerve Degeneration/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/deficiency , Substantia Nigra/metabolism , Animals , Animals, Newborn , Corpus Striatum/pathology , Dopaminergic Neurons/pathology , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Degeneration/chemically induced , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Substantia Nigra/pathology
18.
Mol Neurodegener ; 15(1): 12, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075681

ABSTRACT

BACKGROUND: Multiple missense mutations in Leucine-rich repeat kinase 2 (LRRK2) are associated with familial forms of late onset Parkinson's disease (PD), the most common age-related movement disorder. The dysfunction of dopamine transmission contributes to PD-related motor symptoms. Interestingly, LRRK2 is more abundant in the dopaminoceptive striatal spiny projection neurons (SPNs) compared to the dopamine-producing nigrostriatal dopaminergic neurons. Aging is the most important risk factor for PD and other neurodegenerative diseases. However, whether LRRK2 modulates the aging of SPNs remains to be determined. METHODS: We conducted RNA-sequencing (RNA-seq) analyses of striatal tissues isolated from Lrrk2 knockout (Lrrk2-/-) and control (Lrrk2+/+) mice at 2 and 12 months of age. We examined SPN nuclear DNA damage and epigenetic modifications; SPN nuclear, cell body and dendritic morphology; and the locomotion and motor skill learning of Lrrk2+/+ and Lrrk2-/- mice from 2 to 24 months of age. Considering the strength of cell cultures for future mechanistic studies, we also performed preliminary studies in primary cultured SPNs derived from the Lrrk2+/+ and Lrrk2-/- mice as well as the PD-related Lrrk2 G2019S and R1441C mutant mice. RESULTS: Lrrk2-deficiency accelerated nuclear hypertrophy and induced dendritic atrophy, soma hypertrophy and nuclear invagination in SPNs during aging. Additionally, increased nuclear DNA damage and abnormal histone methylations were also observed in aged Lrrk2-/- striatal neurons, together with alterations of molecular pathways involved in regulating neuronal excitability, genome stability and protein homeostasis. Furthermore, both the PD-related Lrrk2 G2019S mutant and LRRK2 kinase inhibitors caused nuclear hypertrophy, while the Lrrk2 R1441C mutant and γ-Aminobutyric acid type A receptor (GABA-AR) inhibitors promoted nuclear invagination in the cultured SPNs. On the other hand, inhibition of neuron excitability prevented the formation of nuclear invagination in the cultured Lrrk2-/- and R1441C SPNs. CONCLUSIONS: Our findings support an important physiological function of LRRK2 in maintaining nuclear structure integrity and genomic stability during the normal aging process, suggesting that PD-related LRRK2 mutations may cause the deterioration of neuronal structures through accelerating the aging process.


Subject(s)
Aging/metabolism , Aging/pathology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Animals , Cell Nucleus/pathology , Corpus Striatum/metabolism , Corpus Striatum/pathology , Genomic Instability/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
19.
Cell Rep ; 28(5): 1167-1181.e7, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31365862

ABSTRACT

Parkinson's disease causes the most profound loss of the aldehyde dehydrogenase 1A1-positive (ALDH1A1+) nigrostriatal dopaminergic neuron (nDAN) subpopulation. The connectivity and functionality of ALDH1A1+ nDANs, however, remain poorly understood. Here, we show in rodent brains that ALDH1A1+ nDANs project predominantly to the rostral dorsal striatum, from which they also receive most monosynaptic inputs, indicating extensive reciprocal innervations with the striatal spiny projection neurons (SPNs). Functionally, genetic ablation of ALDH1A1+ nDANs causes severe impairments in motor skill learning, along with a reduction in high-speed walking. While dopamine replacement therapy accelerated walking speed, it failed to improve motor skill learning in ALDH1A1+ nDAN-ablated mice. Altogether, our study provides a comprehensive whole-brain connectivity map and reveals a key physiological function of ALDH1A1+ nDANs in motor skill acquisition, suggesting the motor learning processes require ALDH1A1+ nDANs to integrate diverse presynaptic inputs and supply dopamine with dynamic precision.


Subject(s)
Aldehyde Dehydrogenase 1 Family/metabolism , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Learning , Retinal Dehydrogenase/metabolism , Substantia Nigra/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Animals , Corpus Striatum/cytology , Dopamine/metabolism , Dopaminergic Neurons/cytology , Mice , Mice, Transgenic , Retinal Dehydrogenase/genetics
20.
Sci Rep ; 9(1): 3602, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837649

ABSTRACT

Aldehyde dehydrogenase 1A1 (ALDH1A1), a retinoic acid (RA) synthase, is selectively expressed by the nigrostriatal dopaminergic (nDA) neurons that preferentially degenerate in Parkinson's disease (PD). ALDH1A1-positive axons mainly project to the dorsal striatum. However, whether ALDH1A1 and its products regulate the activity of postsynaptic striatal neurons is unclear. Here we show that µ-type opioid receptor (MOR1) levels were severely decreased in the dorsal striatum of postnatal and adult Aldh1a1 knockout mice, whereas dietary supplement of RA restores its expression. Furthermore, RA treatment also upregulates striatal MOR1 levels and signaling and alleviates L-DOPA-induced dyskinetic movements in pituitary homeobox 3 (Pitx3)-deficient mice that lack of ALDH1A1-expressing nDA neurons. Therefore, our findings demonstrate that ALDH1A1-synthesized RA is required for postsynaptic MOR1 expression in the postnatal and adult dorsal striatum, supporting potential therapeutic benefits of RA supplementation in moderating L-DOPA-induced dyskinesia.


Subject(s)
Aldehyde Dehydrogenase 1 Family/physiology , Corpus Striatum/drug effects , Dopaminergic Neurons/pathology , Dyskinesias/prevention & control , Homeodomain Proteins/physiology , Receptors, Opioid, mu/metabolism , Retinal Dehydrogenase/physiology , Transcription Factors/physiology , Tretinoin/pharmacology , Animals , Corpus Striatum/pathology , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dyskinesias/etiology , Dyskinesias/metabolism , Dyskinesias/pathology , Female , Male , Mice , Mice, Knockout , Receptors, Opioid, mu/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...