Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hear Res ; 433: 108768, 2023 06.
Article in English | MEDLINE | ID: mdl-37075536

ABSTRACT

The auditory system transforms auditory stimuli from the external environment into perceptual auditory objects. Recent studies have focused on the contribution of the auditory cortex to this transformation. Other studies have yielded important insights into the contributions of neural activity in the auditory cortex to cognition and decision-making. However, despite this important work, the relationship between auditory-cortex activity and behavior/perception has not been fully elucidated. Two of the more important gaps in our understanding are (1) the specific and differential contributions of different fields of the auditory cortex to auditory perception and behavior and (2) the way networks of auditory neurons impact and facilitate auditory information processing. Here, we focus on recent work from non-human-primate models of hearing and review work related to these gaps and put forth challenges to further our understanding of how single-unit activity and network activity in different cortical fields contribution to behavior and perception.


Subject(s)
Auditory Cortex , Animals , Auditory Cortex/physiology , Auditory Perception/physiology , Primates , Hearing Tests , Neurons/physiology , Acoustic Stimulation
2.
J Assoc Res Otolaryngol ; 23(2): 241-252, 2022 04.
Article in English | MEDLINE | ID: mdl-34988866

ABSTRACT

Previous studies in budgerigars (Melopsittacus undulatus) have indicated that they experience attention capture in a qualitatively similar way to humans. Here, we apply a similar objective auditory streaming paradigm, using modified budgerigar vocalizations instead of ABAB-… patterned pure tones, in the sound sequences. The birds were trained to respond to deviants in the target stream while ignoring the distractors in the background stream. The background distractor could vary among five different categories and two different sequential positions, while the target deviants could randomly appear at five different sequential positions and vary among two different categories. We found that unpredictable background distractors could deteriorate birds' sensitivity to the target deviants. Compared to conditions where the background distractor appeared right before the target deviant, the attention capture effect decayed in conditions when the background distractor appeared earlier. In contrast to results from the same paradigm using pure tones, the results here are evidence for a faster recovery from attention capture using modified vocalization segments. We found that the temporally modulated background distractor captured birds' attention more and deteriorated birds' performance more than other categories of background distractor, as the temporally modulated target deviant enabled the birds to focus their attention toward the temporal modulation dimension. However, different from humans, birds have lower tolerances for suppressing the distractors from the same feature dimensions as the targets, which is evidenced by higher false alarm rates for the temporally modulated distractor than other distractors from different feature dimensions.


Subject(s)
Attention , Melopsittacus , Animals , Humans , Sound
3.
PLoS One ; 15(6): e0235420, 2020.
Article in English | MEDLINE | ID: mdl-32589692

ABSTRACT

Numerous animal models have been used to investigate the neural mechanisms of auditory processing in complex acoustic environments, but it is unclear whether an animal's auditory attention is functionally similar to a human's in processing competing auditory scenes. Here we investigated the effects of attention capture in birds performing an objective auditory streaming paradigm. The classical ABAB… patterned pure tone sequences were modified and used for the task. We trained the birds to selectively attend to a target stream and only respond to the deviant appearing in the target stream, even though their attention may be captured by a deviant in the background stream. When no deviant appeared in the background stream, the birds experience the buildup of streaming process in a qualitatively similar way as they did in a subjective paradigm. Although the birds were trained to selectively attend to the target stream, they failed to avoid the involuntary attention switch caused by the background deviant, especially when the background deviant was sequentially unpredictable. Their global performance deteriorated more with increasingly salient background deviants, where the buildup process was reset by the background distractor. Moreover, sequential predictability of the background deviant facilitated the recovery of the buildup process after attention capture. This is the first study that addresses the perceptual consequences of the joint effects of top-down and bottom-up attention in behaving animals.


Subject(s)
Attention , Auditory Perception , Melopsittacus/physiology , Acoustic Stimulation , Animals , Behavior, Animal , Female , Male
4.
J Acoust Soc Am ; 147(1): 337, 2020 01.
Article in English | MEDLINE | ID: mdl-32006990

ABSTRACT

The perception of spectrotemporal changes is crucial for distinguishing between acoustic signals, including vocalizations. Temporal modulation transfer functions (TMTFs) have been measured in many species and reveal that the discrimination of amplitude modulation suffers at rapid modulation frequencies. TMTFs were measured in six CBA/CaJ mice in an operant conditioning procedure, where mice were trained to discriminate an 800 ms amplitude modulated white noise target from a continuous noise background. TMTFs of mice show a bandpass characteristic, with an upper limit cutoff frequency of around 567 Hz. Within the measured modulation frequencies ranging from 5 Hz to 1280 Hz, the mice show a best sensitivity for amplitude modulation at around 160 Hz. To look for a possible parallel evolution between sound perception and production in living organisms, we also analyzed the components of amplitude modulations embedded in natural ultrasonic vocalizations (USVs) emitted by this strain. We found that the cutoff frequency of amplitude modulation in most of the individual USVs is around their most sensitive range obtained from the psychoacoustic experiments. Further analyses of the duration and modulation frequency ranges of USVs indicated that the broader the frequency ranges of amplitude modulation in natural USVs, the shorter the durations of the USVs.


Subject(s)
Auditory Perception , Signal Processing, Computer-Assisted , Sound Spectrography , Vocalization, Animal , Acoustic Stimulation , Animals , Conditioning, Operant , Female , Male , Mice, Inbred CBA , Noise , Psychoacoustics , Ultrasonics
5.
J Acoust Soc Am ; 144(3): 1508, 2018 09.
Article in English | MEDLINE | ID: mdl-30424658

ABSTRACT

The perception of the build-up of auditory streaming has been widely investigated in humans, while it is unknown whether animals experience a similar perception when hearing high (H) and low (L) tonal pattern sequences. The paradigm previously used in European starlings (Sturnus vulgaris) was adopted in two experiments to address the build-up of auditory streaming in budgerigars (Melopsittacus undulatus). In experiment 1, different numbers of repetitions of low-high-low triplets were used in five conditions to study the build-up process. In experiment 2, 5 and 15 repetitions of high-low-high triplets were used to investigate the effects of repetition rate, frequency separation, and frequency range of the two tones on the birds' streaming perception. Similar to humans, budgerigars subjectively experienced the build-up process in auditory streaming; faster repetition rates and larger frequency separations enhanced the streaming perception, and these results were consistent across the two frequency ranges. Response latency analysis indicated that the budgerigars needed a longer amount of time to respond to stimuli that elicited a salient streaming perception. These results indicate, for the first time using a behavioral paradigm, that budgerigars experience a build-up of auditory streaming in a manner similar to humans.


Subject(s)
Acoustic Stimulation/methods , Auditory Perception/physiology , Melopsittacus/physiology , Vocalization, Animal/physiology , Animals , Female , Humans , Male , Reaction Time/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...